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G
ently balance a coin edge-down on a flat surface and
give it a sharp flick on the side to set it spinning. You’ll
observe that the coin’s initial pure rotation turns into
a mix of spinning and rolling before dissipative forces
bring the coin to a stop. That behavior, like almost all
other classical dynamics phenomena, was explained in

the 18th and 19th centuries, beginning with the work of Leon-
hard Euler (1707–83). You might expect that repeating the disk
game with a ring would yield essentially the same results. But
to the best of our knowledge, until recently the ring game was
not carefully observed and rolling-ring dynamics was not care-
fully studied.

Aggravation turns to joy
On a chilly afternoon, one of us (Jalali) was deeply frustrated by
a science problem that seemed to defy any reasonable approach.
To cope, he took off his wedding ring, spun it on his glass-
 covered desk, and began to apathetically watch the motion.
What he observed was quite different from what he knew to ex-
pect for a rolling disk or coin. Figures 1a and 1b show the trans-
lational motion along the table for a coin and a ring. Initially,
both objects have the same sense for their orbital and spin mo-
tions—that is, both are counterclockwise, viewed from above.
But whereas the coin always has the same orbital and spin sense,
the ring’s translational motion flattens out after a while, and
eventually the ring orbits in the sense opposite to that of its spin. 

A few weeks later, the two of us met socially for dinner and
spent much of the evening spinning our wedding rings and
marveling at their incredible behavior. Our joy of discovery led
to weeks of theoretical modeling and investigations with a
high-speed camera. We learned that the ring’s secret lies in how
it responds to the force of air drag.

Setting up the problem
In our analysis, we consider a ring of mass m, moment of inertia
tensor Iij, radius R, and width h. Our goal is to describe the kine-
matics of motion by specifying the orientation of the body and
the position of its center of mass. To describe the orientation,
we use the Euler angles ϕ, θ, and ψ and a moving coordinate
system with unit vectors e1, e2, and e3. Those coordinates and
unit vectors and some of the ring parameters are illustrated in
figure 1c, which also indicates the two horizontal components
of friction: Ft supports the ring’s spin about its symmetry axis,
and Fn keeps the ring in its curved path.

With so many parameters and coordinates, the analysis gets
involved. But the mathematical and physics technology is the
sort of thing you’d find in a mechanics textbook. 

Let F be the sum of the normal and frictional forces at the
contact point and −mg be the downward-directed force of grav-
ity. According to Newton’s second law of motion, the total force
F − mg accelerates the center of mass, and the torque −rG × F
changes the angular momentum L = Iijωjei. Here ω is the angu-
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QUICK STUDY

The surprising dynamics of rolling rings
Mir Abbas Jalali and Mohammad-Reza Alam

A ring set spinning on a tabletop can display a rolling behavior that a spun coin will never show.
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FIGURE 1. HIGH-SPEED IMAGES of (a) a rolling, spinning disk and (b) a 
rolling, spinning ring show the differences in their trajectories. The disk’s 
wobbly orbit is always in the same sense as its counterclockwise rotation. The ring begins its motion similarly, but in time the ring’s
 translational motion straightens out, then the orbit reverses. (c) The illustrations here define the parameters and coordinates used in
 modeling disk and ring trajectories. The unit vector e1 is always parallel to the horizontal plane, and e2 is normal to the circular edge of 
the ring. The coordinate of point A with respect to the contact point is rA = rG + (h/2) e2.
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lar velocity, and we sum over repeated indices. The angular
 velocity is readily related to changes in the Euler angles via
ω = θ̇e1 + (ϕ̇sinθ + ψ̇)e2 + ϕ̇cosθe3, where the overdot denotes
time differentiation.

We assume that the ring rolls without slipping. Eliminating
the contact force F between the equations of motion for the ac-
celeration of the center of mass and for the change in angular
momentum leads to a single equation of motion. It’s a compli-
cated equation, and not one whose structure we need to ana-
lyze in detail. Indeed, we will reveal its implications by means
of simulated solutions. Nonetheless, we present it for com-
pleteness (you can find additional details in our paper cited in
the additional resources).

Here, v is the velocity of center of mass in the laboratory frame,
and Ω = ω − ψ̇e2. It is almost impossible to track the motion of
the center of mass experimentally because it lies in the hollow
central space of the ring. We therefore use the point along the
axis of the ring that lies in the plane of the top edge, marked
by A in figure 1c. Point A can be identified with the help of
image processing methods and tracked both in experiments
and simulations.

Drag and drop
Depending on the initial value of ω, a ring governed by the
above equation of motion can move in a periodic or quasi -
periodic orbit. Figure 2a shows a representative simulation of
an O-shaped, quasiperiodic orbit. The ring trajectories always
orbit in the same sense as the ring rotates; we never find 
S-shaped trajectories similar to those executed by rings in the
real world.

Evidently, we missed something significant in the simple
model presented above. So we systematically examined the un-
modeled effects of intermittent slippages, elastic vibrations of
the ring, and air drag. Given the experimentally observed tra-

jectories, we quickly ruled out slippage and vibrations. The
game changer is air drag.

The effect of that drag on ω is typically described in terms
of dimensionless rotational drag coefficients. For a general
three-dimensional object, every component of the angular ve-
locity ωi corresponds to a different drag coefficient Ci that
needs to be found experimentally. A simple and useful approx-
imation often invoked in studies of turbulent flow is that air
drag corrects each ω̇i determined by the equations of motion
with an additive term: ω̇i → ω̇i − Ci|ωi|ωi (no index sum).

The surface characteristics of an object rotating on a table
affect C1 and C3 more than C2 because rotations about e1 and e3

tend to compress air between the object and the table. Since the
air can escape from the central hole of a ring, one would intu-
itively expect C1 and C3 to be smaller for a ring than a disk of
the same radius. Figure 2b shows how two ring trajectories
with the same initial conditions differ as drag coefficients vary.
For the parameters relevant to the hollow geometry of a ring,
the simulated trajectory includes a prominent retrograde turn,
very much like that observed experimentally.

To gain further insight into the physics behind the ring’s re-
verse turn, we studied the behavior of Fn, the friction component
that curves the ring trajectory, at those points on the orbit where
θ is a local maximum. After a few orbital cycles, we found, drag
forces are large enough that Fn is small; the ring walks along an
almost straight line. Subsequent interplay between the drag and
other forces brings Fn back to life, but now the frictional force is
reversed compared with its initial direction. Thus, the ring’s cen-
ter of mass orbits in the sense opposite to that of the ring’s spin. 

Additional resources
‣ L. A. Pars, A Treatise on Analytical Dynamics, Wiley (1965).
‣ M. A. Jalali, M. S. Sarebangholi, M.-R. Alam, “Terminal
retro grade turn of rolling rings,” Phys. Rev. E 92, 032913 (2015).
‣ Science, “Spinning ring puts surprising twist on familiar phys -
ics,” https://www.youtube.com/watch?v=t6uPPA-WXME.

I mij j i G G− × ( × ) =ω e r r ω

− × − × ( × ) + sin − cos .Ω ΩL r v em mg R hG θ θ 1[ [1

2

· ·

PT

50

45

40

35

6

5

4

3

2

1

0

−1
−2

−2

−6−1 −4
−4

0 −21 0

0

2 2

2

3 4

4

30

40

50

60

70

80

90

a b

FIGURE 2. REPRESENTATIVE TABLETOP TRAJECTORIES of a ring proportioned like a wide wedding band. Distances are in units of the
ring’s radius. Variable line colors indicate the value of θ in degrees. The curves show the projection onto the tabletop of the ring’s point A.
(Point A and θ are defined in figure 1c.) (a) Absent drag forces, the ring executes a periodic orbit or, as shown here, a quasiperiodic orbit
composed of precessing cycloids. (b) Drag forces can profoundly affect the trajectories. As discussed in the text, such forces can be
 described in terms of three drag coefficients Ci . The green curve (with no θ information) corresponds to (C1, C2, C3) = (0.17, 0.053, 0.17). 
The red and blue curve corresponds to (C1, C2, C3) = (0.02, 0.053, 0.08); it exhibits a change in its orbital sense—a consequence of the 
relatively low values of C1 and C3.


