With their subwavelength (90- μ m) spacing, the antennas collectively form a 1.5 mm × 1.5 mm metasurface that amplifies radiation and reflects it vertically.

To complete the device, the team placed a wire-grid polarizer 6 mm away and parallel to the metasurface, as sketched in the inset. At terahertz frequencies, the output polarizer behaves like a mirror with a tunable reflectivity. Together the two surfaces form a new, external cavity that lases at its resonance

frequency—in this geometry, 2.9 THz. And thanks to the array's large area, the beam's divergence—about 4° by 5°, measured at full width half maximum—is lower, and its profile more symmetric, than the emission from any previous terahertz OCL.

Polarization flips

The team's approach—turning a waveguide laser geometry into a so-called vertical-external-cavity surface-emitting laser (VECSEL) geometry—isn't new. It's a common solution for improving beam quality among visible and near-IR semi-conductor lasers. But the VECSEL approach was thought impossible for QCLs, whose intersubband transitions couple only to an electric field polarized perpendicular to the plane of the quantum wells. That polarization is in the same vertical direction that the beam is supposed to travel in a VECSEL.

In the new work, Xu, Williams, and

PHYSICS UPDATE

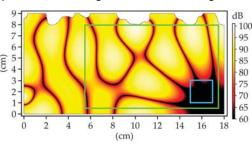
These items, with supplementary material, first appeared at www.physicstoday.org.

A SHARPER VIEW OF OUR GALAXY'S BLACK HOLE

The spectacular jets that shoot from radio galaxies are fueled by plasma swirling around the galaxies' central black holes. Because the black hole at the heart of the Milky Way has comparatively little fuel to draw on, the emission it engenders is feeble. Whether it sustains jets is uncertain. Still, thanks to the black hole's relative proximity, as-

tronomers hope to resolve the structures close to the event horizon that might be responsible for launching jets. With that and other goals in mind, Michael Johnson of the Harvard-Smithsonian Center for Astrophysics and his collaborators have observed the Milky Way's center using the Event Horizon Telescope, an interferometric array of four millimeter-wavelength telescopes at sites in Arizona, California, and Hawaii. In the millimeter band, the emission from the center of the galaxy is dominated by synchrotron radiation from relativistic electrons spiraling around magnetic field lines. By measuring and mapping the radiation's polarization, the researchers identified regions that extend up to six Schwarzschild radii from the event horizon where the magnetic field lines appear to be ordered. What's more, they also identified turbulent regions with intense temporal variability, which may explain how black holes can efficiently pull matter inward. Although the origin of the ordered regions is uncertain, their presence lends support to theories in which magnetic fields redirect and channel orbiting plasma into outward flowing jets. (M. D. Johnson et al., Science 350, 1242, 2015.)

COMPLEX PATTERNS IN FRUSTRATED SYNCHRONIZATION


Although best known for his roles in founding the field of computer science and in cracking the German Enigma cipher, Alan Turing also made a profound impact on developmental biology. In a 1952 paper, he proposed that a system of chemical substances that react together and diffuse through a tissue could account for morphogenesis—the differentiation of identical cells to form patterns and structures, such as our off-center hearts, zebra stripes, and the formation of fingers and toes. In 2014 Seth Fraden and colleagues at Brandeis University experimentally tested Turing's model in rings of coupled microdroplets undergoing the famous oscillating Belousov–Zhabotinsky chemical reac-

tion. Brandeis's Bulbul Chakraborty and her colleagues have now traced the roots of the observed complex spatiotemporal patterns. The theorists worked with a well-studied oscillating reaction model that incorporates an activator and an inhibitor, and they applied it to "cells" arranged in a ring. They found that in the strongly coupled regime, fast inhibitor dynamics endow the cells with a robust preference to be 180° out of phase with their neighbors. But that phase configuration couldn't be satisfied for rings containing an odd number of cells. Such geometric frustration arose first in a system of three cells, which either had all cells in phase or had one cell out of phase. A ring of five cells was even more interesting; it exhibited an explosion of complex synchronization patterns with overlapping regions of stability. One mode even featured cells oscillating at different frequencies. (D. Goldstein, M. Giver, B. Chakraborty, Chaos 25, 123109, 2015.)

VALIDATING TOPOLOGY OPTIMIZATION FOR ACOUSTICS

Topology optimization is a mathematical method for tuning a system's shape or mass distribution to achieve a specific function or behavior. Used for more than two decades in structural mechanics—for such purposes as maximizing stiffness or minimizing

cost—it has found application in numerous other areas, including acoustics. But regardless of how optimized the calculated designs are in theory, they must still satisfy such real-world con-

straints as manufacturability. The methodology must also be validated through real-world confirmation. Rasmus Christiansen, Ole Sigmund, and Efren Fernandez-Grande of the Technical University of Denmark now provide that validation in an acoustics setting: the topological optimization of an acoustic cavity. The design goal was to minimize, in two dimensions, the acoustic pressure in a 2 cm × 2 cm region (blue in the figure) near the lower right corner of an 18 cm × 9 cm rectangular cavity by allowing the shape of the upper wall to vary. The walls are perfectly reflecting, except for a speaker near the lower left corner that outputs a single frequency. The figure shows the calculated optimized design of the upper wall and the resulting simulated sound pressure in decibels. The researchers fabricated the contoured surface using a 3D printer and then, while precisely controlling the cavity humidity