SEARCH & DISCOVERY

Foundational theories in topological physics
garner Nobel Prize

The laureates bucked
conventional wisdom to
redefine the meaning of
phases and phase transitions
in one- and two-dimensional
materials.

s any potter can attest, a ball of clay
can be stretched and reshaped into a

bowl. But without some cutting, pierc-
ing, or attaching different parts together,
that ball will never turn into a ring. In the
language of topology, which elucidates
the properties of an object that remain
unchanged even as the object is continu-
ously deformed, the ball and the bow] are
topologically equivalent, whereas the ring
belongs to a different topological class.
As the joke goes, a topologist is someone
who can’t distinguish between a dough-
nut and a coffee cup.

In the early 1970s J. Michael Kosterlitz
and David Thouless deduced that in
two-dimensional systems, topological de-
fects called vortices could drive a phase
transition. But the transition was not the
ordinary kind accompanied by a change
in the system’s symmetry. Instead, what
changed was the system’s topology.

A decade later, F. Duncan Haldane
took the ideas of Kosterlitz and Thouless
and applied them to 1D spin chains and
opened up a new and rich line of re-
search.”? Around the same time, Thouless
once again invoked topology to explain
the astonishingly precise quantization of
Hall conductivity in 2D electron systems.’

The three theorists turned the abstract
mathematics of topology into a central
tool in the study of low-dimensional sys-
tems, and in so doing, they fundamen-
tally altered the landscape of condensed-
matter physics. The 2016 Nobel Prize in
Physics recognizes their pioneering re-
search. Half of the prize was awarded to
Thouless, with the other half split be-
tween Haldane and Kosterlitz.

A new kind of transition

Kosterlitz was a particle physicist when
he arrived as a postdoc at the University
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of Birmingham in 1970. After completing
several calculations in what might now
be called proto-string theory, he found
that he had been scooped by competitors
and decided a change was in order. By
1971 Kosterlitz was working with Thou-
less, who was a professor at Birmingham.

During a visit to Bell Labs in 1969,
Thouless had learned from Philip Ander-
son about a puzzle involving phase tran-
sitions in certain 1D magnets. Oddly,
short-range interactions did not produce
a phase transition but long-range ones
did, and no one knew what accounted
for the difference. Thouless identified the
contest between the energy and entropy
of magnetic defects as a key difference
between the two cases. When Kosterlitz
came to him in search of a new research
topic, Thouless had been thinking about
how similar arguments could be applied
to superfluid vortices in liquid helium,
particularly in 2D.

In those days, most condensed-matter
physicists regarded phase transitions as
implying the appearance of long-range
order and a change in symmetry. A crystal
structure can be rotated only by certain
angles and still retain the same appear-
ance, whereas a fluid can be rotated at
any angle and look the same. All the
spins in an ordered magnet align along
specific directions, whereas spins in a
disordered magnet point in random di-
rections. A phase transition from a dis-
ordered state to an ordered state was
presumed to occur through the sponta-

neous breaking of some symmetry, and
the process could be characterized by the
evolution of the magnetization or some
other “order parameter” as a function of
temperature, pressure, or other thermo-
dynamic variable.

In the 1930s, however, Rudolf Peierls
argued convincingly that in 2D materi-
als, the thermal motions of atoms would
prevent long-range order from being es-
tablished. N. David Mermin and Herbert
Wagner used similar arguments in 1966
to show that an isotropic 2D Heisenberg
magnet, in which the magnetic moments
can point in any direction, also cannot
order. A year later, Franz Wegner showed
that the same was true in another 2D
magnet, the xy model, which constrains
the magnetic moments to lie in the 2D
plane. Moreover, theoretical work by
Pierre Hohenberg in 1967 showed that
2D superfluidity and superconductivity
should not exist.*

But as the theoretical picture seemed
to clarify and converge, puzzling exper-
imental evidence of a superfluid transi-
tion in thin liquid He films was begin-
ning to appear. Numerical and other
theoretical studies, including Wegner’s
own, were also finding hints that some
sort of transition might occur in 2D atomic
or magnetic systems.

The question was, if 2D systems can-
not order and no symmetry breaks, how
can they undergo phase transitions?
“Kosterlitz and Thouless brought the es-
sential solution,” comments Wegner. Ina



radical departure from conventional
wisdom, Kosterlitz and Thouless pro-
posed a new type of long-range order,
which they referred to as topological.
Furthermore, they speculated that the
order could exist in 2D solids, neutral su-
perfluids, and the xy model.!

What Kosterlitz and Thouless showed
was that in 2D systems, topological exci-
tations called vortices could exist in ad-
dition to more traditional excitations such
as phonons in crystals, magnons in xy
magnets, and surface waves in superflu-
ids. To grasp the topological nature of
vortices, first imagine a 2D ferromagnet
as an arrangement of arrows all pointing
in the same direction. If one traces a coun-
terclockwise circular course around a
group of arrows, the arrow directions are
trivially the same and the so-called topo-
logical charge is 0.

A vortex, illustrated in figure 1a, is a
pattern of arrows such that during a full
counterclockwise circuit around the vor-
tex core, the arrows successively rotate,
yielding a total change of 27, or one revo-
lution. In that case, the topological charge
is 1. An antivortex, shown in figure 1b,
also executes a full rotation but through
—27t for a topological charge of —1.

If one continuously deforms a vortex—
for example, by rotating all the arrows by
the same amount— the topological charge
remains 1. One could never go from a
vortex to an antivortex in that way; a
transformation from one to the other
must be discontinuous. However, when
a vortex and antivortex pair up, their
topological charges cancel to zero. Vortex—
antivortex pairs can therefore form con-
tinuously out of the ordered state, which
also has a toplogical charge of zero.

Kosterlitz and Thouless calculated
that the energy cost of making a vortex
or antivortex and the entropy of the vor-
tex or antivortex both depend logarith-
mically on the size of the system. The
free energy of the system is F=E - TS,
where E is energy, T is temperature, and
Sisentropy. Atlow temperatures, the en-
ergy term dominates, and free vortices
and antivortices do not exist. However,
the energy of a vortex—antivortex pair is
a function of the separation between the
two, and tightly bound pairs can appear
even at low temperature. As the temper-
ature increases, more pairs are excited,
and the vortex—antivortex distances
grow larger. At some critical tempera-
ture, the entropy term overcomes the en-
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FIGURE 1. VORTEX CONFIGURATIONS. (a) On a counterclockwise circular path around a
vortex in a magnet, each successive spin is rotated so that a full trip gives a total rotation of
271. (b) On a similar trip around an antivortex, the total rotation is —27r.

ergy term, the vortices and antivortices
become unbound, and free vortices and
antivortices roam the system. The system
undergoes a topological phase transition
since dubbed the Kosterlitz—Thouless
(KT) transition. Sometimes the transition
is given as BKT, where B is for the late
Vadim Berezinskii, who in 1970 published
similar ideas in a Russian journal.

From the beginning, Kosterlitz and
Thouless understood that their ideas ap-
plied to 2D solids, magnets, and liquid
He. However, their original 1972 paper
focused on the 2D solid—fluid transition,
for which the vortices are point defects
called dislocations. Thus the KT transi-
tion describes the melting of a 2D crystal.
The statistical mechanics of 2D crystals
continues to be a lively topic of research,
particularly in colloidal systems. William
Irvine of the University of Chicago notes
that in those systems the KT transition
“is the only good theory of melting that
we have.”

Less than a year later, Kosterlitz and
Thouless followed up with a longer paper
that detailed how their ideas worked in
the xy model and superfluid He. In 1977
Kosterlitz and David Nelson (the two met
while Kosterlitz was a postdoc at Cornell
University) predicted that the KT transi-
tion in superfluid He would manifest as
ajump in superfluid density. The predic-
tion was quickly confirmed by experi-
ment. By the end of the decade, the KT
transition was found to apply to super-
conducting thin films as well.

From classical 2D to quantum 1D

In 1931 Hans Bethe wrote down an exact
solution for the 1D spin-/ chain. (See the

article by Murray Batchelor, PHYSICS
TODAY, January 2007, page 36.) Known as
the Bethe ansatz, the solution gave a gap-
less spin excitation spectrum: The excita-
tion energies continuously go to zero at
low wavenumbers. Because the ansatz
led to an answer that superficially resem-
bled that from semiclassical spin-wave
theory, physicists tended to skip the diffi-
cult mathematics and go straight to the
solution. And although there was no
proof, the conventional wisdom in the
early 1980s was that the situation should
not be different for spins greater than .
In 1981 Duncan Haldane was work-
ing at the Institut Laue-Langevin in
Grenoble, France, on the Luttinger liquid
model, a perturbation treatment of 1D
electron systems. He realized that he could
apply the classical statistical-mechanics
ideas of Kosterlitz and Thouless to the
quantum mechanical 1D spin chain if he
turned one of the spatial dimensions into
time. Then, the vortices of Kosterlitz and
Thouless would become tunneling events
between different topological states.
Haldane found that from the topolog-
ical point of view, the tunneling events
wound the spin field around the chain
axis by +2m in spacetime, much as the
vortex does in 2D space. In the path-
integral formulation of quantum mechan-
ics, the positive and negative winding
exactly cancel for spin-%; that, Haldane
showed, leads to gapless excitations.
Once he had worked out the spin-%
case, Haldane considered a spin-1 chain,
and he discovered that the cancellation
did not occur. “It became immediately ob-
vious that there was a gap,” explains Hal-
dane. But, he says, “I presumably didn't
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FIGURE 2. THE HALDANE GAP.
Duncan Haldane conjectured that in a one-
dimensional spin-1 chain, the excitation
spectrum would have an energy gap. Three
years later neutron scattering results for
the quasi-1D compound CsNiCl,, which has
magnetic chains with lattice spacing ¢,
confirmed the prediction. Shown here is
a plot of the excitation spectrum for the
chain. The energy gap is evidenced by the
fact that the excitation frequency never dips
to zero. The blue line is a fit to spin-wave
theory. (Adapted from ref. 5.)

explain that well enough in my papers.”
His original 1981 manuscript was rejected.

By the time he came up with more
convincing arguments to support his
conjecture, Haldane says, much of the
Kosterlitz-Thouless origins of his think-
ing had disappeared. When his two sem-
inal papers came out in 1983,% it didn’t
take long for experimentalists to take up
a search for the Haldane gap. In 1986
William Buyers and his colleagues at
Chalk River Laboratories measured® a
clear gap, shown in figure 2, in the spin
excitation spectrum of the quasi-1D sys-
tem CsNiCl,. “There’s nothing like ex-
perimental confirmation to quiet the crit-
ics,” says Haldane.

From real space to momentum space

When a magnetic field is applied perpen-
dicular to a current I in a metal plate, the
Lorentz force deflects the charges per-
pendicular to both the field and the cur-
rent. The accumulation of deflected
charges produces a potential difference V.
The Hall effect is named for Edwin Hall,
who discovered it in 1879, and the ratio
I/V is called the Hall conductance.

In 1980 Klaus von Klitzing and his
colleagues discovered that the Hall con-
ductance of a 2D electron gas is quan-
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tized in integer multiples of e*/h (e is the
electron charge and & is Planck’s con-
stant).® The quantization of the Hall con-
ductance, for which von Klitzing received
the 1985 Nobel Prize in Physics, can be
observed to better than 1 ppb, regardless
of sample-dependent properties such
as the number of defects. (See PHYSICS
ToDAY, December 1985, page 17.) So ex-
quisitely precise is the measurement that
Ry = h/e?, the von Klitzing constant, now
defines the SI unit of resistance. Soon it
will also be used to define the SI unit of
mass. (See the article by David Newell,
PHYSICS TODAY, July 2014, page 35.)

In 1982 Thouless, by then at the
University of Washington, and three of
his postdocs—Mahito Kohmoto, Peter
Nightingale, and Marcel den Nijs—
explained the quantization of the Hall
conductance using topological consider-
ations. (See the article by Joseph Avron,
Daniel Osadchy, and Ruedi Seiler,
PHYsICS TODAY, August 2003, page 38.)

“Here the topology is in a little more
abstract setting because one’s not talking
about some topological configuration in
real space the way the vortexis,” the Uni-
versity of Pennsylvania’s Charles Kane
explains. “The topology in the quantum
Hall effect is really a topology in a quan-
tum state.”

What Thouless and his colleagues fig-
ured out, elaborates Allan MacDonald of
the University of Texas at Austin, was
that the integer in the QHE “is actually a
topological index of the band structure.”
In essence, the quantized jumps in Hall
conductance are transitions between dif-
ferent topological states.

It turns out that the QHE was just the
tip of the iceberg in terms of topological
effects in momentum space. For instance,
topological insulators—materials that
are insulating in the bulk but host
conducting states at the surface—have
emerged as a major topic in condensed-
matter physics.” (See the article by Xiao-
Liang Qi and Shou-Cheng Zhang,
PHYSICS TODAY, January 2010, page 33.)

Kane explains the topological surface
states this way: The defining characteris-
tic of insulators and conductors is their
electronic band structures. Insulators have
a gap in their band structure that sepa-
rates occupied valence states from unoc-
cupied conduction ones. Metals conduct
precisely because they don’t have such
a gap. If a topological insulator is joined
to an ordinary insulator, one can try to



smoothly interpolate between the band
structures of the two at their interface.
“But if you did that, somewhere along
the way, the [energy] gap has to go to
zero, because if it didn't go to zero, that
would mean that the two are topologi-
cally the same.” The consequence is that
the boundary state is a gapless conduct-
ing one. (See the article by Nick Read,
PHYSICS TODAY, July 2012, page 38.)

Such states, because they are topolog-
ical in nature, are robust to perturba-
tions, much as the quantum Hall states
are. “You can mess with it, you can tickle
it, you can change things,” explains Kane,
“but there are certain things that cant go
away.” Thus topological insulators have
been suggested as a host for robust quan-
tum computation.

“I think the Nobel Committee wanted
to point out that topology will play an in-
creasing role in physics,” comments von
Klitzing, “and they wanted to go back to
the roots of topological ideas.” Indeed,
Wegner and others add that this year’s
Nobel Prize will likely not be the last to
recognize topological physics.

The laureates

David Thouless was born in 1934 in
Bearsden, Scotland. After receiving his
undergraduate degree from the Univer-
sity of Cambridge, he earned his PhD
from Cornell University in 1958. Follow-
ing a postdoc at the University of Cali-
fornia (UC), Berkeley, he went to the Uni-
versity of Birmingham in 1965. He did a
short stint at Yale University before join-
ing the University of Washington in 1980,
where he is now an emeritus professor.

Michael Kosterlitz was born in Ab-
erdeen, Scotland, in 1943. He did his
bachelor’s and master’s work at the Uni-
versity of Cambridge before moving to
the University of Oxford, where he re-
ceived his DPhil in 1969. He did a one-
year postdoc at the Institute of Theoreti-
cal Physics in Turin, Italy, followed by
another postdoc at the University of
Birmingham. After one more postdoc at
Cornell University, he returned to the
University of Birmingham as a lecturer
and later became a reader. In 1982 he
moved to Brown University, where he is
now the Harrison E. Farnsworth Profes-
sor of Physics.

Duncan Haldane was born in 1951 in
London. He received his undergraduate
education at the University of Cam-
bridge and completed his PhD there in
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1978. He worked at the Institut Laue—
Langevin in Grenoble, France, before
moving to the University of Southern Cal-
ifornia, Bell Labs, and then UC San Diego.
In 1990 he settled at Princeton University,
where he is currently the Eugene Higgins

Professor of Physics.
Sung Chang
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