Carl Modes is a postdoctoral associate at the Rockefeller University in
New York City. Mark Warner is a professor of physics at the University

of Cambridge in Cambridge, UK.

Shape-programmable

MATERIALS

Carl Modes and Mark Warner

Inspired by the insights of mathematician Carl Friedrich Gauss, scientists

are engineering hydrogels and liquid-crystal-containing polymers that

change from flat to curved in response to heat and other stimuli.

ailors and cartographers have long realized an ironclad

mathematical truth: Objects that are

ways cannot be seamlessly covered or directly represented
by flat materials unless those materials are stretched
or torn. For that reason, tailors need cuts and seams to
make a shirt from flat pieces of cloth, and mapmakers representing

vances remain limited by the same
general incompatibility between flat
and curved spaces that confronts the tai-
lor and the cartographer. The ability to
transform flat sheets into shapes with
any desired curvature would be a
transformative advance in device de-
sign and beyond.

curved in most

Earth on a flat surface can accurately depict relative areas or local

shapes but not both. A well-known consequence is the wildly out-of-
proportion representation of Greenland and Antarctica in Gerardus
Mercator’s well-known projection. Indeed, distorted spherical projec-
tions are known from antiquity, dating back at least as far as Ptolemy’s

Planisphaerium.

Clothing a rounded form or mapping shapes and distances
from a globe onto a flat sheet requires artifice or compromise,
if not both. Curved and flat spaces are generically incompati-
ble. But what if we could transcend that limitation? Imagine
the possibilities for device design if we could reversibly trans-
form a flat sheet of material into almost any shape at all. Mo-
tivated by that prospect, scientific interest in the study of
origami has exploded. Already, researchers have created
shape-shifting robots constructed of a series of hinged metal
pieces, DNA structures that self-assemble into a multitude of
three-dimensional shapes, and more. (See, for example, refer-
ences 1 and 2 and the Quick Study by Ara Knaian, PHYSICS
ToDAY, June 2013, page 64.) But exciting as they are, such ad-

32 PHYSICS TODAY | JANUARY 2016

Gauss's remarkable theorem
Why are certain curved shapes so prob-
lematic? It cannot simply be a matter of
having curvature—after all, gift wrap
so easily accommodates a curved cylin-
drical shape that it is frequently sold
wound around a cardboard tube. The
key lies in recognizing the difference between intrinsic and ex-
trinsic curvature. Much of our understanding of those matters
is owed to the insights of 19th-century mathematical titan Carl
Friedrich Gauss, pictured at right. Indeed, the most commonly
encountered form of intrinsic curvature —that which occurs in
2D surfaces—bears the name Gaussian curvature.

At any point on a surface, the Gaussian curvature is the
product of the two extrinsic principal curvatures, defined as
the curvature of the smallest circle that fits snugly at a given
point and the curvature of the snug-fitting circle that is perpen-
dicular to the first. Here, “snug” means coinciding with the sur-
face up to second derivatives. The curvature of a circle is the
inverse of its radius.



CARL FRIEDRICH GAUSS,
1840. Portrait by Christian
Albrecht Jensen.




SHAPE-PROGRAMMABLE MATERIALS

The principal curvatures
of a surface may be changed
by bending or folding the
surface, but their product
will remain the same—so
long as the surface is not
stretched or compressed.
That statement is Gauss’s
celebrated theorema egregium, and it encodes the privileged, in-
variant nature of the intrinsic geometry. On a flat sheet, for ex-
ample, both principal curvatures are zero at any given point.
Upon bending or folding the sheet, one of the principal curva-
tures becomes nonzero—in fact, equal to the curvature of the
bend —but the product remains zero because the sheet remains
flat along the perpendicular direction. In that sense, a cylinder
is flat, which is why it can be wrapped. On the other hand, the
Gaussian curvature of the surface of a sphere with radius r is
everywhere equal to 1/r%. And a shape like a catenoid or a
saddle will exhibit principal curvatures bending in opposite
directions, resulting in negative Gaussian curvature. A flat
sheet wrapping any of those curved shapes must be stretched
or torn.

For those of us concerned with material elasticity and me-
chanics, instruction comes from the exception to the invariance
posited by the theorema egregium. If we want to alter the intrin-
sic geometry of a surface, we must stretch or compress the
sheet, potentially at all locations. (See the article by Michael
Marder, Robert Deegan, and Eran Sharon, PHYSICS TODAY,
February 2007, page 33.) For thin sheets, that elastic mode of
deformation is far more energetically costly than simple bend-
ing, which alters the principal curvatures but not their product.
Specifically, if a sheet has thickness & much smaller than its
other dimensions, the energy density of bending is propor-
tional to hi*, whereas the energy density of stretching or com-
pression is proportional to . Evidently, only a material that can
spontaneously change its natural internal lengths, ideally in
response to some external stimuli other than an imposed stress
or strain, will allow for an energetically affordable shape-
changing system.”®

Exotic materials for mechanics

Ordinary materials such as paper or metal will not do if we are
to realize the dream of devices that can reversibly contort and
morph beyond the restrictions of their intrinsic curvature;
we'll need something new and exotic. For instance, differen-
tial growth in leaves leads to wrinkling. Isotropic swelling of
N-isopropylacrylamide (NIPA) hydrogels, if engineered to
vary spatially, leads to Gaussian curvature that is reversible on
deswelling. In this article we review continuing developments
in NIPA hydrogels. But we also turn to liquid-crystal solids,
which undergo remarkably large shape changes beyond sim-
ple volume change.

Aliquid crystal in the so-called nematic phase has the long
axis of its rod-like molecules correlated with a direction called
the director. Thus nematics are anisotropic liquids with direc-
tional but not spatial order. In materials called liquid-crystal
solids, the nematics reside on long, chain-like polymer mole-
cules. Cross-linking between chains forms a network that then
becomes a solid rather than a flowing liquid of polymer chains.
In those polymeric nematic solids, the liquid-crystal rods bias
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Imagine the possibilities for device design
If we could reversibly transform a flat sheet
of material into almost any shape at all.

the otherwise random con-
figurations of the long-chain
backbones, as illustrated in
figure 1a, so that the chains
are stretched out along the
nematic director and con-
tracted in the perpendicular
directions. The solid that
the chains make up exhibits its own corresponding mechanical
elongation.

A sparse cross-linking of the polymer chains yields an elas-
tomer—a soft, rubbery solid in which the local molecular en-
vironment remains liquid-like. If the nematic elastomer has a
uniform director, then a block of elastomer will be longer along
the nematic direction and shorter along the perpendiculars
than it would be in the isotropic phase. Heating such a block
reduces the nematic order—that is, the extent of molecular
alignment. As a result, the substance shortens along the ne-
matic director and elongates in the perpendicular directions.
Eventually the block becomes isotropic, as illustrated in figure
1b. Cooling reverses the length transformations and restores
the original, biased shape.

Remarkable strains can be achieved in liquid-crystal elas-
tomers. Cooling drives extensions to as much as four times the
original length, and heating gives recovery. Other external con-
trol is possible. For instance, if as little as 5% of the molecular
rods are dye molecules that bend on illumination, then light
can strongly reduce nematic order, since bent rods do not pack
nearly as effectively. Hence light can cause mechanical contrac-
tions analogous to the thermal heating response just discussed.
In the dark, the solid recovers and elongates, just as it does
when cooling follows a heating step.

=

FIGURE 1. IT’S A STRETCH. In its nematic phase (a), the constituent
liquid-crystal rods of a liquid-crystal elastomer are orientationally
ordered about a preferred direction n, the director. As a result, the
random walk of the elastomer’s polymers is also biased along the
director. The orange dots represent cross-links between chains that
frustrate flow and make the elastomer a solid. (b) Upon heating, the
length of the nematic block decreases and the width increases.
Eventually the material becomes isotropic.



Preparing a NIPA hydrogel involves mixing NIPA and a
bisacrylamide cross-linker in water. The hydrogels have a
sharp shrinkage transition at a critical solution temperature of
about 33 °C. Below the critical temperature, the polymer mol-
ecules are strongly repulsive and the gel is accordingly
swollen. As the transition temperature is exceeded, the inter-
molecular interaction becomes attractive, water is expelled
from the gel matrix, and the gel collapses to as little as 1/10 its
original size. The total amount of shrinkage (or swelling, when
the transition temperature is crossed from above) depends on
the specific concentration of NIPA and the strengths of the in-
termolecular interactions above and below the critical temper-
ature. Note that in contrast to the uniaxial deformations of the
liquid-crystal solids, the local swelling or shrinking in NIPA
hydrogels is isotropic.

Buckling out of a plane

To this point we have described novel materials whose local
dimensions can change in a coherent way. Is that capacity for
change enough to bridge the gap to real shape programmabil-
ity? Is it possible to seamlessly wrap at least parts of a sphere
with a flat sheet of one of those materials? Clearly, spatially ho-
mogeneous deformations alone are not good enough. A flat
sheet of a liquid-crystal solid with a uniform director will ex-
tend in one direction and shrink in the other, but it will remain
a flat sheet. For a sheet of uniform hydrogel, the extension will
be constant in all directions, but the result is again a flat sheet,
albeit one with a different volume.

If shape programmability is to be achieved, spatial inhomo-
geneity must somehow be introduced to the local changes of
dimension. Consider a thin sheet of liquid-crystal solid in which,
as illustrated in figure 2a, the director pattern is simply con-
centric circles. In the liquid-crystal business, in two dimen-
sions, that pattern is called an azimuthal +1 disclination defect.
When the sheet is heated, the material shrinks along the con-
centric circles, which are everywhere tangent to the nematic
director. At the same time, the material elongates in the radial
direction, because that direction is everywhere perpendicular
to the director field. A geometric crisis arises since the ratios of
circumferences to corresponding radii are now less than the
familiar 27.

In figure 2a we have indicated a circle with circumference
P (for perimeter) and radius r on the preheated sheet. After the
sheet is heated, the circle will have a perimeter P’ < P. We use
the symbol A to denote the ratio: A =P'/P <1. The thermally
induced deformation of the sheet causes it to grow in the
radial direction, and the postheating radius ' is related to r
by ' = A™r, where v is the optothermal Poisson ratio, a mate-
rial parameter dictating the perpendicular response relative
to the parallel response. Elastomers are volume conserving,
so v =

After deformation, the perimeter-to-radius ratio becomes
P'/r'=2nA"*". How can that be? Figure 2a indicates the answer.
The status of 27 as the ratio between a circle’s circumference
and its radius is a property of the intrinsic geometry of flat
space. Thus, upon heating, the sheet not only buckles out of the
plane, but it does so in a way that introduces Gaussian curva-
ture somewhere on the surface. Due to the simplicity and sym-
metry of the director pattern, it is not hard to guess that the
new, buckled surface is a cone.®” For that surface, the curvature
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FIGURE 2. CONES AND ANTI-CONES from flat sheets. (a) When a
flat liquid-crystal solid with a concentric, circular pattern of directors
(top) is heated, it pops into a cone (middle). The bottom image shows
an experimental realization. (b) When the director pattern is radial
(top), heating causes the sheet to buckle into an anti-cone (middle).
The bottom image shows an experimental realization. The indicated
geometric parameters are discussed in the text. (Photographs courtesy
of Timothy White.)

is concentrated at the tip. The integral of the curvature depends
on the aspect ratio of the cone and is equal to the angular
deficit—that is, the angular size of the wedge that must be cut
out of a disk so that when the cut disk is reattached, it forms
the cone.

In figure 2b, the director pattern on a flat sheet is radial —a
radial +1 disclination defect. When the sheet is heated, P'= AP
and r' = Ar. Circumferences grow and radii contract, which re-
sults in azimuthal buckling into a saddle-like shape to accom-
modate the surplus circumference. Such a shape has variously
been called an anti-cone, excess cone, e-cone, or, simply, cone.
Its properties mirror those of a cone; in particular, total Gauss-
ian curvature is concentrated at the “tip,” but now the inte-
grated curvature is equal to an angular surplus.® As with cones,
anti-cones exist in nature—for example, when tissue in a leaf
or coral grows at different rates at nearby locations, which
leads to ruffles and negative curvature.*®

Spatial inhomogeneities can be created in NIPA hydrogels
by varying the local concentration of NIPA in the course of
preparing the gel (see reference 9 and PHYSICS TODAY, May
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2012, page 15). Typically one uses a controllable mixer that
feeds two or more monomer solutions of varying concentra-
tions into a gap between parallel sheets of glass—the region
where solidification into the gel takes place. The resulting be-
havior at the shrinkage-swelling transition, shown in figure 3,
is analogous to that in liquid-crystal solids with defects. So, for
example, if the gel disk has a relatively higher concentration of
NIPA colloids toward the center than around the edge, the gel
will swell more at the center and the disk will balloon up into
a spherical cap-like surface with positive Gaussian curvature,
as shown in figure 3a. Conversely, if the concentration of NIPA
is higher near the edges than at the center, the result, shown in
figure 3b, is a ruffled, saddle-like surface exhibiting negative
Gaussian curvature. Other configurations are possible. For in-
stance, preparing half of a strip of material with high concen-
tration and the other half with low concentration will produce a
rolled tube with a neck region such as you might see on a bottle."

A toolkit for device design

Physicists now face the challenge to move beyond the ideas of
the previous section and leverage them to achieve programma-
ble, switchable shapes for practical device design. Before we
address that challenge head on, we note that from the point of
view of the intrinsic geometry, a smooth cone is indistinguish-
able from a polyhedral corner. The corners of a closed book,
the corners of a box, and the sharp, jutting end of the coffee
table that devils your shins are all cones. The difference be-
tween the polyhedral corner and the cone lies purely in the
extrinsic geometry of folding: The surface around the poly-
hedral corners has distinct ridge lines—folds or creases—but
the smooth cone does not.

Anti-cones, too, correspond to many familiar examples with
distinct ridge lines and otherwise flat regions, such as the joint
between a chimney and a roof. But in those cases the poly-
hedral regions have anti-corners, regions where you must tra-
verse more than 27t radians to return to your starting point. Iso-

FIGURE 3. CONTORTING
HYDROGELS.
N-isopropylacrylamide
(NIPA) hydrogels swell
when cooled below a
specific transition temper-
ature. With appropriately
chosen concentration
gradients, a NIPA hydrogel
can be induced to swell
into such shapes as (a) a
sphere and (b) a ruffled
surface. (Adapted from
ref. 9.)
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lated +1 disclination defects will generate smooth cones or anti-
cones. But because of the correspondence between polyhedral
corners and anti-corners with cones and anti-cones, it should
be possible to stitch defects together to create arbitrary poly-
hedral shapes.

Recent advances in the preparation and writing of custom
director fields have opened the door to working with nearly
arbitrary patterns."! However, one still needs to stitch together
regions with different “textures,” or liquid-crystal orientations.
The task is a nontrivial one, as the boundaries for isolated de-
fects are generally incompatible and the geometry that results
from the smoothed-out, energy-minimizing texture is generi-
cally nowhere flat—and thus does not produce polyhedral cor-
ners. It turns out, however, that simple wedges and triangles
of uniform, azimuthal, or radial textures may be used as build-
ing blocks, provided those wedges are pieced together accord-
ing to appropriate rules: The director field must either be con-
stant across a join, or the wedges’ director fields must meet at
a rank-1 connected boundary, meaning that the angle to the
boundary is the same on both sides.

Figure 4a shows examples of building-block wedges. The
change in angular extent of any such wedge as a function of
the spontaneous strain is easy to calculate. So, given a collec-
tion of unstrained wedges that fill all the space around a point,
it is straightforward to determine whether the strained system
produces a new total angle that is greater or less than 27t —that
is, whether it produces an anti-corner or a corner. Additional
anti-corners and corners can be stitched together, as long as the
wedge-joining rules are followed.

When pyramids meet

We next turn to two simple examples that convey an idea of
the shapes and textures that can be created using the wedge-
joining methodology. First, imagine a sheet whose director pat-
tern is a set of concentric squares, as in figure 4b. Such a sheet
will behave under heating just as the azimuthal +1 disclination
defect described earlier, though with a somewhat weaker re-
sponse to the spontaneous strain. Notably, the resulting shape
isnot the creased pyramid one might expect; instead, the result
is a cone, created as the pyramid relaxes its bend energy and
smooths out.

Now imagine a large sheet with many copies of those con-
centric-square textures.”? As figure 4c illustrates, that simple
tiling obeys the rules of the wedge joining. Moreover, in addi-
tion to the +1 azimuthal disclination defects at the centers of
the concentric squares, the tiling also has locations that behave
like +1 radial disclination defects (experts will recognize them
as negatively charged -1 disclinations) where four corners of
the original squares join. Those locations should transform into
anti-cones if the sheet is heated, so the shape formed by the
sheet upon heating is not simply the iterated solution of the
isolated square tile—an array of smooth cones. Indeed, two
neighboring smooth cones would intersect on a parabola curv-
ing away from the conical tips, but all along that parabola, the
material bending perpendicular to the parabola would curve
toward the tips. As a result, the Gaussian curvature is negative
along the parabola.

The appearance of Gaussian curvature where the natural
geometry does not demand it means a costly stretch. The ma-
terial, in fact, does not pay the price. Instead, at the cost of in-



curring some extra but rel-
atively cheap bend energy,

the would-be cones re-

main the creased pyra-
mids with polyhedral cor-

ners that they were before
relaxing. The neighboring
pyramids meet along flat
lines, and there is no
longer Gaussian curvature
where there shouldn’t be.

As we describe below,

such pyramidal arrays can be used in devices that support
weight or pump liquids.

Our second example is also directly tailored to a device ap-
plication. The ability of a flat sheet to reversibly and control-
lably fold up and completely encapsulate a volume would be
desirable for many purposes, including drug delivery and
micro- or nanoscale mechanical transport. Imagine a texture
similar to the concentric squares, but instead using concentric
equilateral triangles. Now take four such equilateral triangles
and join them to form one larger equilateral triangle, as illus-
trated in figure 5a. As the large triangle of material is heated
or illuminated, four pyramids rise up from the four triangular
patches. To reduce any energy of creasing between the pyra-
mids, the material conspires to produce flat surfaces between
the central and outer pyramids. Creases only develop along the
rank-1 boundaries in the individual triangular patches, as seen
in figures 5b and 5c. Eventually, the material from the corners
of the large triangle is pushed so far around behind the central
patch that the outer pyramids meet behind the central one. At
the moment of their meeting, the sheet has closed itself into
a cube.

The alternative to stitching together evolving polyhedra
would be, given a desired target shape, to find the correspond-
ing distribution of Gaussian curvature and then seed that dis-
tribution through prescribed director fields or NIPA concentra-
tions. That difficult problem remains open, though the tools of
differential geometry have allowed it to be at least partially ad-
dressed: Theoretical work has established that director fields
can be determined for rather general distributions of Gaussian
curvature.”* Finding the surface that corresponds to a speci-
fied distribution of curvature remains a difficult challenge that
may not even have a unique solution since the bending a sur-
face undergoes to minimize its bend energy does not change
Gaussian curvature.

Getting to work
Now is an exciting time to be exploring shape programmabil-
ity, thanks to the confluence of, first, recent laboratory advances
in the production of new, exotic materials that can change their
local dimensions and, second, theoretical insights about the in-
terplay between Gaussian curvature and elasticity. We in the
field are continuing to refine material techniques, extend our
ability to fully model the elastic energetics of shape-shifting
systems, and cleanly prescribe an exact director field or con-
centration gradient to achieve a specific, desired shape.
Several common themes emerge when considering the re-
quirements for a shape-shifting device. First, to be effective, ac-
tuation must involve stretch—which is strong—rather than

-> ->

FIGURE 4. BUILDING BLOCKS FOR SHAPE
PROGRAMMING. (a) The straight lines in

these wedges represent liquid-crystal director
patterns. When combined according to rules
described in the text, such wedges can be the
building blocks of shape-programmable materials.
(b) A concentric-square director pattern built
from four building-block wedges deforms into a
square pyramid when the liquid crystals along
the directors contract. The pyramid then relaxes to a smooth cone.
(c) This array of concentric squares explicitly shows the 36 building-
block wedges. It deforms into an array of square pyramids that
cannot relax to their smooth conical form because the stretch-energy
cost for doing so is too great. The array in the photograph (adapted
from ref. 11) can support more than 100 times its own weight.

much weaker bends. Gaussian curvature is the perfect route to
usable stretch, as may be seen by returning to the array of rising
square pyramids shown in figure 4c. The pyramids in the array
rise to avoid stretch energy in the face of a changing internal
geometry. Accordingly, if the movement to the new shape were
frustrated —for instance, if a heavy plate were placed on the
array sheet before heating or illumination, then stretch would
result and a strong force would act. Indeed, Timothy White and
colleagues, who created the array in figure 4c,"! found that a
smaller array of four pyramids could lift a mass about 150 times
that of the original sheet. Forces can also develop if a shape-
shifting stimulus is removed. Consider a plate that has adopted
a new shape in response to a stimulus and imagine that fluid
flows underneath it. Upon removal of the stimulus, large
stretches develop if the plate is impeded in its return to pla-
narity. The enclosed liquid is vigorously pumped out of the
way, and, again, work is done.

Second, shapes such as lenses, which exploit their curva-
ture, can be dialed up from complex but smooth director pat-
terns. Third, in most devices that would make use of shape-
shifting materials, the shape-changing component needs to be
anchored to a surrounding, unchanging medium. Encapsula-
tion applications are the exception, but a lifter or a pump must
be incorporated into a structure. And that need leads to a prob-
lem of great subtlety that is currently being addressed: How
can one have a substance that changes drastically but doesn’t
change along the line of contact with its surroundings?

Shape programmability is approaching the point where
device design is limited only by the imagination and creativity
of the designer. Myriad avenues to effective soft devices are
open. Drug delivery and encapsulation methods, peristaltic
pumps and gateway switching for lab-on-a-chip microfluidics,
repeatedly flushable sieves for large chemical or colloidal re-
action chambers, dynamically controllable surface bumpiness
for modulating aerodynamic effects on a wing, morphable dig-
ital displays of Braille for the blind, haptic feedback for touch
screens, switchable and transformable gears, and even “photo-
mechanical” cells in which energy is stored in intrinsic geom-
etry are just a few of the possible practical applications of shape
programmability. All those and more are now within reach.

In a wonderful adaption of the words of Marshall McLuhan,
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FIGURE 5. A PROGRAMMABLE ENCLOSURE. Four concentric equilateral-triangle director patterns combine to give the large triangular
pattern depicted in (a). When liquid crystals contract along the director pattern, a pyramid pops out from each small triangle; eventually
those pyramids close onto a cube. (b) The colored regions and red dot on the large triangle become the correspondingly colored cubical
faces and indicated vertex in the cube depicted in (c). The grid pattern on the cube emphasizes the three-dimensional nature of the shape.

Kaushik Bhattacharya and Richard James said, “The material
is the machine.”’® All the ambitious applications just listed are
achieved not with complicated, constructed machines but by
means of monolithic programmed materials that are them-
selves the machines. It is a marvelous way to proceed at small
length scales.
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