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A Nalf
cenfury of

density
functional
theory

Andrew Zangwill

Today’s most popular method

for calculating the electronic
structure of atoms, molecules,
liquids, solids, and plasmas began
as a bold hypothesis: The electron
density distribution completely
characterizes the ground state of
a many-electron system.

n 1929 Paul Dirac made a famous
announcement:

The general theory of quantum mechan-
ics is now almost complete. . . . The un-
derlying physical laws necessary for the
mathematical theory of a large part of
physics and the whole of chemistry are
thus completely known. . . . It therefore
becomes desirable that approximate
practical methods of applying quantum
mechanics should be developed, which
can lead to an explanation of the main
features of complex atomic systems
without too much computation.!

Beginning almost immediately, physicists and
chemists rose to Dirac’s challenge and developed
the theoretical framework needed to calculate wave-
functions and energy eigenvalues for atoms, mole-
cules, and solids.
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By the mid 1960s, computers had sufficient
speed and memory to solve the Schrodinger equa-
tion for atoms and small molecules by using the
Hartree-Fock approximation. That variational
method makes a simple guess at the many-electron
wavefunction and ensures that each electron inter-
acts with the external potential from fixed nuclei,
with the classical electrostatic potential produced
by the other electrons, and with a nonlocal exchange
potential, which provides short-range repulsion
between parallel electron spins. Many-body cor-
relation effects—principally short-range repulsion

Figure 1. Creators of density functional theory. Walter Kohn (left, in
1962) and his two postdoctoral fellows, Pierre Hohenberg (middle, in
1965) and Lu Sham (right, undated), produced their theory in 1964 and
1965. (Photographs courtesy of Walter Kohn and the John Simon
Guggenheim Memorial Foundation, Pierre Hohenberg, and Lu Sham.)

between antiparallel spins—not captured by the
Hartree-Fock approximation were studied by
atomic physicists and quantum chemists using
more sophisticated choices for the many-electron
wavefunction. As a matter of taste, physicists study-
ing correlation effects in solids preferred to use an-
alytic methods borrowed from quantum field the-
ory to analyze model Hamiltonians constructed to
capture the essential features of entire classes of
materials.

That was the state of affairs in 1964-65 when
density functional theory (DFT) appeared. A first
paper by theoretical solid-state physicist Walter
Kohn and his postdoctoral fellow Pierre Hohenberg
proved that the electron density n(r) at spatial point
r is sufficient to completely characterize the ground
state of an N-electron system—no many-electron
wavefunction required.? A second paper by Kohn
and postdoctoral fellow Lu Sham cast the exact
many-body problem —calculating n(r) and the total
energy —in the form of a set of equations similar to,
but simpler than, the Hartree-Fock equations.’> An
essential feature of the theory is the exchange-
correlation energy E_[n(r)]. That formally exact but
unknown quantity is a functional of the density.
That is, it maps the electron density function n(r) to
the scalar energy E _ associated with all exchange
and correlation effects. An approximation to E, [1(r)]
is needed for practical work, and Kohn and Sham
proposed one for that purpose.

Material-specific  calculations performed
throughout the 1970s and 1980s showed that the ap-
proximation proposed by Kohn and Sham could
produce valuable information about electronic
structure without appeal to experiment. A transfor-
mative event of the late 1980s was the development
of significantly better approximations for E _[n(r)].
Commercial DFT codes soon appeared that allowed
nonexperts with modest computational resources to
perform calculations with great accuracy for many,
if not all, systems of interest. The largest impact was
felt for complex systems for which alternative com-
putational methods were prohibitively expensive.
DEFT rapidly became the tool of choice for the vast
majority of researchers interested in calculating the
physical properties of specific atoms, molecules, lig-
uids, solids, and plasmas.

Many types of problems have been tackled
using DFT. Here’s a sampling: Condensed-matter

www.physicstoday.org

physicists predicted and then synthesized a new su-
perconductor with a previously unknown crystal
structure.* Physical chemists explored the relative
reaction kinetics for the crystal growth of gallium
nitride by using either trimethylgallium or triethyl-
gallium as the precursor molecule.’ Geoscientists
predicted and then found a new crystalline phase of
magnesium silicate whose calculated elastic proper-
ties explained several previously puzzling properties
of the lowermost layer of Earth’s mantle.® Theoreti-
cal biochemists combined DFT with classical molec-
ular-dynamics simulations to identify the mecha-
nistic reason why aspirin inhibits one form of the
enzyme cyclooxygenase much more than a closely
related form.” DFT also has made important contri-
butions to materials-design projects intended to re-
place traditional trial-and-error experiments with
carefully targeted experiments guided by theory
and computation.?

In 1990 Hohenberg, Kohn, and Sham (shown in
figure 1) published a lively reminiscence of their ex-
periences creating DFT.’ Less than a decade later,
Kohn shared the Nobel Prize in Chemistry for his
role in creating the theory (see PHYSICS TODAY, De-
cember 1998, page 20). In this article | commemorate
the 50th birthday of DFT by looking back at its first
25 years with three questions in mind: What circum-
stances motivated the creation of DFT? How did
theoretical physicists and quantum chemists react
to DFT at first and as time went on? What will be
the legacy of DFT?%

Alloys in Paris

In the summer of 1963, Kohn arrived in Paris to
spend the fall with the research group of Philippe
Nozieres at the Ecole Normale Supérieure. His plan
was to study the effects of the electron—phonon in-
teraction on the optical properties of metals. The
topic was timely because experiments had just con-
firmed Kohn's prediction that the electron-phonon
interaction produces anomalies in the vibrational

Andrew Zangwill is a physics professor at the Georgia
Institute of Technology in Atlanta. His next project is a
scientific biography of Philip Anderson.
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Figure 2. These previously unknown ternary compounds were
predicted by density functional theory (DFT) to be thermodynamically
stable and were later synthesized by experiment. The horizontal axis
is the calculated energy “distance” from a compound’s strongest
competing phase. Square and triangular symbols designate cubic and
noncubic crystal structures, respectively. DFT successfully predicted
nearly all the compounds to the left of the dashed line as single phase
(solid symbols) and compounds to the right of it as multiphase (open
symbols). VIrSi is the only exception. DFT calculations also predicted
the correct optical properties for the compounds.

(Figure adapted from ref. 16.)
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spectrum of a metal. That prediction was part of the
work for which he was awarded the 1961 Oliver E.
Buckley Solid-State Physics Prize by the American
Physical Society.

Asit turned out, Kohn did not work on the elec-
tron—phonon problem in Paris. Instead, he began
thinking about how to calculate the total energy of
a disordered metal alloy. A likely trigger for the
change of plan was the 1962 publication of an inter-
national symposium on metallic solid solutions in
the Journal de Physique et le Radium. The contributors
included many of Kohn’s friends in the theoretical
solid-state physics community: Nevill Mott, Sam Ed-
wards, Jacques Friedel, and Pierre-Gilles de Gennes,
among others. Kohn also had a long-standing inter-
est in alloys because he had spent the years 1950-60
at the Carnegie Institute of Technology, where alloy
physics was a specialty of the experimental solid-
state physics faculty.

Disordered alloys are characterized by ran-
domness in the chemical identity of the atoms lo-
cated at the sites of an underlying periodic lattice.
The electrostatic potential v,,(r) produced by the
fixed ions and felt by the electrons thus varies ran-
domly from site to site. Unfortunately, no method
was known to solve the Schrédinger equation to
find the many-electron wavefunction for such a sit-
uation. The wavefunction was required because the
expectation values of the electron kinetic energy
and the electron—electron Coulomb repulsion are
important contributors to the total energy.

Physics Today

Kohn immersed himself in the metallurgical
literature and studied the evidence that charge
transfer occurs between the chemically different
constituents of an alloy. As he related in his Nobel
Prize lecture, “The electrostatic interaction energy
of these charges is an important part of the total en-
ergy. Thus in considering the energetics of this sys-
tem there was a natural emphasis on the electron
density distribution n(r).” In the 1990 reminiscence
paper with Hohenberg and Sham,’ Kohn uses per-
turbation theory in reproducing a derivation of the
total energy of a disordered alloy. The final expres-
sion involves only two quantities: the electron den-
sity averaged over the entire crystal and the actual,
spatially varying electron density n(r). At this point,
he says, “the question occurred to [me] whether a
knowledge of n(r) alone determined—at least in
principle —the total energy.”

It is important to appreciate the revolutionary
nature of that question. In the Schrodinger equation,
the ionic potential v, (r) is the only term that distin-
guishes one alloy from another. That potential de-
termines the wavefunction, which in turn deter-
mines the electron density and the total energy. The
energy is thus a functional of v, (r). Kohn contem-
plated a radical inversion of that thinking. Is it pos-
sible that the total energy depends only on the elec-
tron density n(r)? Years earlier Llewellyn Thomas
and Enrico Fermi had proposed approximate theo-
ries of the total energy where that was the case, but
no one had seriously suggested that the exact total
energy of any many-electron system could be a
functional of the electron density alone. If it were
true, knowledge of n(r) was sufficient to determine
the external potential, the many-particle wavefunc-
tion, and all the ground-state properties—even the
Green functions of many-body theory! That was a
very deep question. Kohn realized he wasn’t doing
alloy theory anymore.

General questions require general solution
methods, and Kohn was particularly well trained in
one class of them: the variational methods of math-
ematical physics. Such methods were a particular
specialty of the department of applied mathematics
at the University of Toronto, where Kohn had
earned his BA and MA degrees. The local experts
there were chairperson John Lighton Synge and two
of Kohn’s mentors, Alexander Weinstein and Arthur
Stevenson. Another virtuoso of variational meth-
ods, Julian Schwinger, supervised his Harvard PhD
thesis, which introduces what is today called the
Kohn variational principle. From the reminiscence
paper,’ or from any technical review of DFT, one can
learn how variational methods are central to the
proof of the Hohenberg—Kohn theorem and to the
derivation of the Kohn-Sham equations.

The physicist’s reaction

When it appeared in Physical Review, the elegant and
austere Hohenberg-Kohn paper did not make a
great impression on the physics community. A typ-
ical reaction came from one of Kohn’s own postdocs,
Vittorio Celli, who attended a seminar presented by
Kohn when he returned to the US early in the spring
of 1965:
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I remember thinking that the theory
with Hohenberg was cute but would
not have many consequences. I cer-
tainly did not think it compared in sig-
nificance with the many-body calcula-
tions for the electron gas that had been
obtained by [Keith] Brueckner and his
collaborators.!

In the late 1950s, physicists were beginning to
apply the powerful methods of quantum field the-
ory to many-body phenomena, and Lev Landau’s
theory of the Fermi liquid produced a natural focus
on the excitation spectrum rather than on the
ground-state properties that DFT was designed to
address. Hohenberg began a long career at Bell Labs
at the end of 1964, and he vividly remembers the
reaction of the resident theorists when he spoke
about his and Kohn’s work: “Phil Anderson, Bill
McMillan, and Phil Platzman were in the audience
and there was no enthusiasm. They correctly un-
derstood that our results would not help them solve
the difficult many-body problems they were strug-
gling with.”1

By contrast, the Kohn-Sham paper presented a
set of Hartree-like equations that would appeal im-
mediately to any physicist interested in calculating
the electronic properties of specific crystalline
solids. The equations in question are

n(r’)

|r—r

+ ’UXC(r)

Yi(r) = ei(r), (1)

1
-V )+ [

where ¢/(r) is the ith single-electron wavefunction
of a noninteracting electron system with the same
density, n(r) = YN |¢,(r)* as the interacting elec-
tron system of interest. The functional derivative
v, (1) = 6E, [n(r)]/Oon(r) defines a local potential that
takes exact account of both exchange and correla-
tion. This is the deep achievement of the theory: If
E, [n(r)] was known, v, (r) would be known, and one
could exactly calculate n(r) and the total energy of
the ground state from the N solutions of equation 1.

Unfortunately, E [n(r)] is probably unknow-
able. So Kohn and Sham proposed a local density
approximation (LDA) for E_[n(r)], in which the ex-
change-correlation behavior of every tiny volume of
an inhomogeneous system is taken to be the same
as the behavior of a uniform electron gas with a den-
sity equal to the density of that volume. That gives

00l8) = 5 16, (9], 2APA(E) + 010D, (2)

where € () is the exchange—correlation energy per
particle of an electron gas with uniform density #.
The exchange part, v'PA(r) =—[(3/m)n(r)]'?, was
known exactly, and the correlation part v:°*(r) was
easily approximated from existing many-body
calculations.

Materials-minded physicists concerned pri-
marily with simple metals and semiconductors were
respectful but not excited by the LDA because semi-
empirical methods already provided the informa-
tion they wanted. But the LDA held real promise for
those interested in more complex systems like tran-
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Figure 3. The number of annual citations to one or both of the
foundational papers (references 2 and 3) of density functional
theory (DFT). Both papers are among the most highly cited in
the history of Physical Review, a fact that reflects the increasingly
widespread adoption of DFT as a method to compute electronic

sition metals, ordered compounds, and solid sur-
faces. Indeed, equations 1 and 2 were already being
used to study those systems. Absent the correlation
part, they had been proposed in 1951 by John
Slater," who replaced the nonlocal exchange po-
tential in the Hartree-Fock equations by a local
exchange potential, v (r) =-%[(3/m)n(r)]'?. Be-
cause vIPA = %ot the LDA was widely considered
to provide theoretical justification for Slater’s in-
sight about the exchange part of the many-electron
problem.

LDA calculations performed through the
decade of the 1970s yielded ground-state properties
of solids to within 1-10% of their experimental
value. That track record led Michael Schliiter and
Sham to argue in their February 1982 PHYSICS TODAY
article (page 36) that the LDA version of DFT was
the most reliable method to predict crystal struc-
tures, equilibrium lattice constants, phonon spectra,
cohesive energies, and work functions. In some
cases, practitioners had success interpreting the
quantities €;and ¢,(r) in equation 1 as one-electron en-
ergy eigenvalues and eigenfunctions of the interact-
ing electron system being studied, despite the lack
of any formal justification from Kohn-Sham theory
to do so. The remarkable impact of the LDA on
physics by the end of the 1980s can be judged from
the contents of Physical Review B, the leading
archival journal of condensed-matter physics. Of
the 112 articles published in the 15 December 1990
issue, 32 either reported new LDA calculations or
compared new experimental results with previ-
ously published LDA calculations.

In parallel with researchers who performed
LDA calculations, a small but dedicated group
examined the foundations of DFT itself. Some
plumbed the depths of the Hohenberg-Kohn theo-
rem; others discovered exact properties of the
exchange—correlation energy and used them to
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(Adapted from ref. 17.)

explain why the eigenvalues of the
Kohn-Sham equations do not cor-
rectly predict the energy bandgap in

a semiconductor. Other aspects of

E [n(x)] helped explain why the LDA suc-
ceeds so often in situations where it might be
expected to fail —for example, where n(r) varies
rapidly in space.

Density gradients can be large in real systems,
and early studies of corrections to the LDA sug-
gested that an expansion of E_ [n(r)] in powers of the
dimensionless ratio [Vn|*/n®? might not converge. To
some researchers, that was a red flag indicating that
the LDA was an uncontrolled approximation. Hap-
pily, David Langreth, John Perdew, and their collab-
orators reexamined the issue in the 1980s and de-
rived new approximations for E, [n(r)] —soon called
generalized gradient approximations (GGAs)—
which outperformed the LDA when applied to
atoms, solids, and surfaces. Today, GGAs and other
post-LDA functionals for solving the Kohn-Sham
equations are the standard for solid-state work in
which quantitative, material-specific information is
desired. (Figure 2 shows one example.) The ubig-
uity helps explain why the Kohn-Sham article is one
of the most highly cited papers in all of physics. The
number of citations to it per year has increased
nearly every year since it was published (see figure
3 and the article by Sid Redner, PHYSICS TODAY, June
2005, page 49).

The chemist’s reaction

Chemists grapple daily with the small energy dif-
ferences that drive the diversity of their subject. The-
oretical chemist E. Bright Wilson made that point in
1983 when he discussed the contributions of quan-
tum mechanics to chemistry:

One thinks perhaps first of the thousands
of quantitative calculations of electronic
energies from which values of inter-
atomic distances, heats of reaction, bar-
riers to internal rotation, reaction rates,
etc. have been obtained. I believe that
ultimately this will be the most impor-
tant type of contribution.’

Computational chemistry is judged by its ability to
calculate energies accurately, and the standard of
less than 0.1 eV needed for most chemical problems
is much more severe than the accuracy needed for
most solid-state physics problems. For that reason,
chemists largely ignored DFT throughout the entire
LDA era.

A quantum chemist typically solves the
Schrodinger equation for an N-electron molecule by
using a trial-wavefunction method:

P Create a set of orbitals for each atom by super-
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Figure 4. The process of cellular respiration in the protein
complex cytochrome c oxidase involves the breaking of an
oxygen-oxygen bond (shown in green). Density functional the-
ory determined the arrangement of atoms shown here at a point
in the reaction pathway when that bond is about to cleave.

posing analytic basis functions with adjustable
weight factors.

P Create a set of molecular orbitals by superposing
different groups of atomic orbitals with adjustable
weight factors.

» Choose groups of N molecular orbitals and or-
ganize each group into fully antisymmetric one-
electron wavefunctions called Slater determinants.
P Use adjustable weight factors to superpose all
the determinants into a single many-electron wave-
function.

The computational task is to vary the weight fac-
tors until the calculated ground-state energy is
minimized.

Two papers published in the summer of 1972,
both about the water molecule, demonstrated that a
first-generation molecular LDA calculation could
not compete with a high-quality wavefunction cal-
culation.” The wavefunction calculation superposed
more than 2000 Slater determinants and obtained a
total energy within 0.25% of the experimental value.
The LDA calculation, by contrast, incorrectly found
that the ground-state geometry of the molecule was
linear rather than bent. Years later, LDA practition-
ers realized that the principal source of error in
the calculation was not its use of a local exchange
potential, but rather its use of an additional simpli-
fication of the total potential function introduced
to facilitate the numerical solution to equation 1.
Nevertheless, the damage was done, and many
quantum chemists simply refused to take LDA cal-
culations seriously.

Robert O. Jones is one of several scientists who
developed methods to solve the Kohn-Sham equa-
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tions for molecules without making any simplifying
approximations beyond the LDA. In a recent remi-
niscence, Jones describes the disbelief of quantum
chemists when his 1979 calculation predicted that
the beryllium dimer would have a very short bond
length. Up to that time, all wavefunction calcula-
tions had predicted that Be, was either unbound or
had a very long bond. The subsequent experimental
confirmation of the LDA prediction did not change
many minds. To his dismay, Jones learned later from
the editor of the Journal of Chemical Physics that “de-
spite the large number of manuscripts published [in
this journal using DFT], many chemists remain to be
convinced of its value.”

By the mid 1980s LDA calculations often repro-
duced chemical trends, but they consistently and
embarrassingly predicted molecular binding ener-
gies 1-2 eV greater than those seen in experiment.
That problem motivated quantum chemist Axel
Becke to adopt a spirit of practicality and empiri-
cism: He fit a parameterized GGA to Hartree-Fock
exchange-energy data for atoms, added the LDA
correlation energy, and used the resulting potential
to solve the Kohn-Sham equations for a series of di-
atomic molecules. His calculation reduced the error
in bond energies by 75% compared with a standard
LDA calculation. Subsequent research improved
matters even more and dovetailed with the GGAs
that physicists proposed on nonempirical grounds.

In 1991 Becke spoke at an international con-
gress of quantum chemistry. The closing address
was given by John Pople, a computational chemist
whose widely used Gaussian computer program
made it possible for nontheorists to perform high-
quality wavefunction calculations. Pople remarked
that he found Becke’s results “stimulating and in-
triguing,” and barely a year later, his group pub-
lished a systematic comparison of the best quantum
chemical calculations with DFT calculations for 32
molecules.”” Pople and his collaborators concluded
that the best density functionals outperformed the
best wavefunction methods and that the wavefunc-
tion methods were computationally more expen-
sive. DFT was promptly incorporated into the
Gaussian program, and with that endorsement,
many chemists joined their physics colleagues in
recognizing the value of DFT as the fastest way
to calculate electronic properties with an accuracy
sufficient to address many of their scientific ques-
tions. (Figure 4 shows one example.) In 1998 Pople
shared the Nobel Prize in Chemistry with Kohn “for
his development of computational methods in
quantum chemistry.”

The legacy of DFT

The long-term legacy of DFT depends largely on the
continued value of the DFT computer programs that
practitioners use daily. One could argue that the al-
gorithms implemented in those programs reflect a
long sequence of approximations and extensions
made by many individuals to the original Hartree—
Fock method to solve the N-electron Schrodinger
equation. The sequence begins with Slater’s density-
dependent approximation for the exchange poten-
tial. It proceeds to density-dependent correlation
effects originally derived by many-body theorists
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for other purposes. Next come density-gradient cor-
rections, which were also first used for other pur-
poses and later added to Slater’s exchange potential.
The sequence ends with the adoption of empirical
and semiempirical potential functions that deliver
the present level of agreement between calculations
and experiment.

Although accurate in detail, those operational
steps give the wrong impression about the evolu-
tion of charge-density-based electronic-structure
calculations after 1965 precisely because they do
not mention the Hohenberg—Kohn theorem or the
Kohn-Sham formalism. The numerical results,
however good, would always be suspect as having
been derived from ad hoc, albeit physically moti-
vated, considerations unanchored to an underlying
fundamental theory. Ultimately, DFT provides both
the scientific justification and the basis for under-
standing the meaning behind the algorithms used
in the computer codes. That would be true even if no
aspects of DFT had been known to the practitioners.

If DFT had not been invented in the mid 1960s,
the superior results obtained from today’s codes
would eventually force suspicions that an exact
many-body theory based entirely on charge density
must exist. It is to the great credit of Hohenberg,
Kohn, and Sham that they had such a suspicion and
acted on it, even in the face of scant supporting ev-
idence. Indeed, their key idea was not “in the air,”
and the zeitgeist of many-body theory was moving
steadily in other directions for both physicists and
chemists. That is why the deep insight demon-
strated by Walter Kohn and his young collaborators
must be counted as much a part of DFT’s legacy as
the quality of the numerical results obtained by its
current manifestations.
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