Lawrencium’s ionization potential, atom by atom

Researchers in Japan have begun probing the atomic physics of
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elements that can be produced only in minute quantities.

ber Z, the greater the effect of spe-

cial relativity on its atomic struc-
ture. The innermost, speediest electrons
are the most directly affected: Their rel-
ativistic mass causes their orbitals to
contract, and the resulting change in
nuclear charge screening alters the sizes
and energies of all other electronic or-
bitals. The magnitude of the relativistic
correction is small but noticeable in el-
ements with Z as low as 30; it grows ex-
tremely rapidly in the heaviest elements,
whose core electrons can exceed 75% of
the speed of light.

The basic physics of the effect is well
understood, but determining the conse-
quences for large atoms poses a chicken-
and-egg problem. Elements beyond fer-
mium (Z=100) can be made only one
atom at a time. It’s possible to use laser
spectroscopy to probe the energy levels
of a single atom in a trap—but only if
one already knows approximately where
those energy levels lie. Theory is of lim-
ited help: Computational chemists have
developed efficient methods for accu-
rately calculating the electronic struc-
tures of molecules composed of small
atoms, but figuring out how to adapt
them into reliable methods for highly
relativistic systems requires experimen-
tal benchmarks. As a result, not a single
atomic energy level is confidently known
for any element past Fm.

‘ he higher an element’s atomic num-

Now Yuichiro Nagame (Japan Atomic
Energy Agency) and his colleagues have
taken a step' toward filling that knowl-
edge void by measuring the ionization
potential —the energy required to re-
move the most weakly bound elec-
tron—of lawrencium (Z=103). Stan-
dard methods for such a measurement
use laser ionization and require a sam-
ple of 10'°-10" atoms. Nagame and col-
leagues devised a method? to do it with
just a few thousand atoms produced one
at a time over the course of several days.

The researchers produced **Lr atoms
by bombarding a californium-249 tar-
get with a beam of energetic boron-11
ions from the JAEA tandem accelerator
in Tokai. Although **Lr, with a half-life
of 27 seconds, is far from Lr’s most sta-
ble isotope—some other isotopes have
half-lives of hours—it’s one of the easi-
est to produce. And its half-life is per-
fectly adequate for the ionization exper-
iment, which requires nuclei to survive
for only a few seconds.

The JAEA researchers guided their
Lr atoms into an ionization cavity, a hol-
low cylinder made of tantalum that
they’d heated to 2700 K or higher. Some
of the Lr atoms clung to the Ta surface
and were ionized by the thermal en-
ergy. The researchers electrostatically
extracted the newly formed ions from
the cavity and counted them. The ion
yield depends on Lr’s ionization poten-
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Masato Asai (left) and Tetsuya Sato (right) prepare the apparatus for their ionization-
potential measurement. The white tube Sato is holding delivers lawrencium atoms,
contained in a carrier gas, to the tantalum ionizer inside the steel chamber.
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tial, Ta’s work function, the tempera-
ture, and the experimental geometry.
By accounting for all those factors, the
team found the ionization potential to
be 4.96 +0.08 eV.

That value agrees well with state-of-
the-art theoretical calculations per-
formed by Anastasia Borschevsky
(Helmholtz Institute Mainz, Germany),
a coauthor of the paper. Borschevsky
used a form of coupled-cluster theory
(see PHYSICS TODAY, November 2013,
page 15), corrected for relativistic ef-
fects, to find an ionization potential of
4.963 eV. Her calculations, and many
others’, show Lr having a different elec-
tronic configuration than lutetium
(Z=71), the element just above it in the
periodic table. Lu’s most weakly bound
electron sits in a 5d orbital. By analogy,
in a nonrelativistic Lr atom, the highest
occupied orbital would be 64. But the
calculations predict that relativistic ef-
fects switch some orbitals” energetic
order so that Lr’s valence electron is
actually a 7p. Experimentally verifying
that result would go a long way toward
clarifying how relativity affects the
heaviest elements.

Nagame and colleagues’ experimen-
tal error bars are a little too large to
conclude that the coupled-cluster ap-
proach is definitely the right one. For-
tunately, their main source of uncer-
tainty is the counting statistics, so
making a more precise measurement
could be as straightforward as running
a longer experiment. But beam time at
the JAEA accelerator is a limited re-
source (see PHYSICS TODAY, April 2015,
page 18), and to make best use of it, the
researchers plan instead to turn their at-
tention to other elements: fermium,
mendelevium (Z = 101), nobelium (102),
and rutherfordium (104).

Each of those elements has at least
one sufficiently long-lived isotope that
can be produced at a sufficiently high
rate. And, importantly, all of their ion-
ization potentials are expected to be
below 6.5 eV, the highest that the re-
searchers can hope to measure with their
hot Ta cavity. Beyond rutherfordium,
ionization potentials are expected to
rise rapidly—peaking at 12 eV for
copernicium (Z = 112), which would be
far out of reach.
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