
S
hortly after the 1908 publication of Abra-
ham Flexner’s disapproving book The Amer-
ican College: A Criticism, the Carnegie Foun-
dation for the Advancement of Teaching
commissioned Flexner to survey the 155

medical schools in the US and Canada. The resulting
book-length report, published in 1910, was highly
critical of medical education in the two countries.
Flexner’s publication had a significant impact.
North American medical schools completely revised
their curricula, and by 1935 their number had de-
creased to 66.

On the strength of that report, in 1930, Louis
Bamberger and his sister Caroline Bamberger Fuld,
who had recently sold their large department store
in Newark, New Jersey, approached Flexner and
asked him to establish a medical school in Newark.
Flexner was creative in his response to the siblings’
request. Instead of following his previous work on
medical schools, he chose a rather different course.
He persuaded the Bambergers to establish the Insti-
tute for Advanced Study in Princeton, New Jersey,
as a place where researchers could pursue their in-
terests without the pressure to produce specific re-
sults.1 Flexner became the institute’s cofounder,
along with the Bambergers, and its first director.

Later, Flexner wrote about the “usefulness of
useless knowledge,” the paradox that “the pursuit
of these useless satisfactions proves unexpectedly
the source from which undreamed-of utility is de-
rived.”2 He believed that a place like the Institute for
Advanced Study would be much more valuable

than a place devoted to par-
ticular goals.

For the record, Richard
Feynman expressed a counter-
argument to that point of view in
his autobiography “Surely You’re
Joking, Mr. Feynman!” Adventures of a
Curious Character (W. W. Norton, 1997).
There he wrote,

When I was at Princeton in the 1940s I
could see what happened to those great
minds at the Institute for Advanced
Study, who had been specially selected
for their tremendous brains and were
now given this opportunity to sit in this
lovely house by the woods there, with
no classes to teach, with no obligations
whatsoever. These poor bastards could
now sit and think clearly all by them-
selves, OK? So they don’t get any ideas
for a while: They have every opportu-
nity to do something, and they’re not
getting any ideas. I believe that in a sit-
uation like this a kind of guilt or depres-
sion worms inside of you, and you begin
to worry about not getting any ideas.
And nothing happens. Still no ideas
come. Nothing happens because there’s
not enough real activity and challenge:
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Some 50 years ago, just for fun, I began playing around
with different types of particle statistics. Those investigations
led to a surprising application.
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You’re not in contact with the experi-
mental guys. You don’t have to think
how to answer questions from the stu-
dents. Nothing! (page 165)

Regardless of the state of play in the 1940s,
Feynman’s criticism is not valid for the current and
recent faculty at the Institute for Advanced Study,
who interact with physicists from all over the world.

Beyond bosons and fermions
Circulating around the physics community are sev-
eral stories about scientists confronted with the
“uselessness” of their work. Ernest Rutherford, when
questioned in the early 1930s about the utility of his
nuclear-physics experiments, replied that his work
“has no use and it never will have.” Michael Fara-
day is said to have shown some of his experiments
on electricity and magnetism to a British prime min-
ister. The prime minister said to Faraday, “That is
very interesting, but what good is it?” Faraday
replied, “I do not know Mr. Prime Minister, but one
day you will tax it.”

My own work at the Institute for Advanced
Study that led to the introduction of color charge in
particle physics is an example of useless knowledge
that turned out to generate something of consider-
able use—even if it is yet to generate any tax rev-
enue. Admittedly, the suggestion of color did not
come from the pure contemplation that Flexner may
have had in mind, but rather as a response to the ob-
served masses of light baryons and the theoretical
work of Feza Gürsey and Luigi Radicati.

As a graduate student I had wondered why
only bosons and fermions exist in nature. That is,
why does a quantum mechanical wavefunction de-
scribing many identical particles always remain un-
changed when particles are permuted (in which
case the particles are bosons and one speaks of Bose
statistics) or simply become multiplied by ±1 (when

the particles are fermions; each transposition con-
tributes a factor of −1). I continued that interest as a
faculty member at the University of Maryland, and
in 1962 I went to the NATO summer school of the-
oretical physics, held at Robert College in Istanbul,
Turkey.3 Figure 1 shows the school participants,
which included such distinguished physicists as
Sidney Coleman, Sheldon Glashow, Louis Michel,
Giulio Racah, and Eugene Wigner. While there, I gave
a seminar on parastatistics—a generalization of
Bose and Fermi statistics—a topic I had worked on
with Gianfausto Dell’Antonio and George Sudar-
shan. Albert Messiah and I carried that work further
over a period of two years and published two long
papers on particle statistics other than Bose or Fermi.4

Messiah and I showed that such statistics are
compatible with quantum mechanics. In those novel
cases, exchanging the identical particles in a multi-
particle wavefunction ψ can lead to wavefunctions
that differ from ψ in ways more complicated than
mere multiplication by ±1. Although quantum me-
chanics allows for more elaborate statistics than
Bose or Fermi, we found no evidence for particles
that take advantage of that possibility.

In our second paper, we studied field theories
of particles that obey statistics other than Bose or
Fermi. Parastatistics, which had been introduced by
Herbert S. Green, is an example of a generalized sta-
tistics that can be incorporated into a field theory.5

Parastatistics comes in two families, para-Bose
and para-Fermi, each labeled by a positive integer p,
called the order. The usual Bose and Fermi statistics
correspond to p = 1. A field theory with order-p
parastatistics includes p particle annihilation fields ϕa

and an equal number of creation fields ϕa†. (The index
a runs from 1 to p and the dagger denotes the adjoint
operation.) The parastatistics are defined by the
equal-time commutation and anticommutation rela-
tions satisfied by those fields. For the para-Bose case,

[ϕa(x,t),ϕa†(y,t)]− = δ(x − y);
[ϕa(x,t),ϕb†(y,t)]+ = 0, (a ≠ b).

Here, the “–” subscript denotes commutator and the
“+” subscript denotes anticommutator. Para-Fermi
fields satisfy similar relations with the roles of com-
mutator and anticommutator reversed.

The above commutation rules mean that for
para-Bose statistics of order p, up to p particles can
be in an antisymmetric state. For para-Fermi statis-
tics of order p, up to p particles can be in a symmetric
state; in particular, as many as p particles can be in
the same quantum state.

Messiah and I developed Green’s ideas and
found that the spin–statistics theorem could be gen-
eralized to state that particles that have integer spin
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Figure 1. Participants at the 1962 NATO summer school

of theoretical physics posed for this group portrait at
Robert College, Istanbul, Turkey. Feza Gürsey is seated at
the right end of the first row; I’m just to his right, and Louis
Michel is two spots to my right. In the second row, Eugene
Wigner is third from the left, and Giulio Racah is third from
the right. Sheldon Glashow is second from the left in the
top row, and Sidney Coleman is eighth from the left.



must obey para-Bose statistics and particles that
have half-odd-integer spin must obey para-Fermi
statistics. We had no applications of parastatistics in
mind. Our motivation was simply to stretch the for-
malism of quantum field theory—to see what pos-
sibilities were compatible with it. At the time, what
we discovered was useless knowledge.

The quark statistics paradox
As a graduate student I was subject to disparate in-
fluences. On the one hand, very simple ideas were
used to classify newly discovered particles. The
only mathematics that seemed necessary was know-
ing how to add and subtract numbers like 2⁄3 and −1⁄3.
On the other hand, I learned sophisticated mathe-
matical techniques used in quantum field theory. In-
deed, my PhD thesis on the asymptotic condition in
quantum field theory, which was a formalization of
the Lehmann-Symanzik-Zimmermann scattering
theory, was purely theoretical—it had no numbers,
except to label pages and equations. I used so-called
operator-valued distributions that at the time were
considered rigorous mathematics.

In 1964 Murray Gell-Mann introduced current
quarks, the quark operators that appear in field the-
ory Lagrangians and that are used to construct such
things as the electric-charge operator.6 In the same
year, George Zweig introduced aces, particles that
are clothed by a cloud of virtual particles and occur
in bound states such as protons and neutrons.7 I will
use the word quark to refer to both those constructs.
The models introduced in 1964 had three types, or
flavors, of light quarks, called up (u), down (d), and

strange (s), along with their corresponding anti-
quarks. The quarks were assumed to belong to the
fundamental three-dimensional representation of
SU(3)f, where the subscript stands for flavor. Box 1
describes the SU(N) groups and their representation
theory in some detail. For now it suffices to note that
the SU(3)f group can be thought of as a collection of
matrices whose action on the three flavored quarks
is much like the action of a rotation matrix on the
three components of a vector. 

In nature, baryons such as the proton are made
up of three quarks, and mesons such as the pion are
made up of a quark and an antiquark. In the original
models, there was no dynamical reason for just
those two combinations to occur. They were chosen
simply because they allowed the quantum numbers
of the known baryons and mesons to be represented
in terms of the quark quantum numbers.

In the original quark models, quarks were as-
sumed to have spin 1⁄2 so that the protons and neu-
trons having three quarks would be spin-1⁄2 particles.
Spin, however, did not play a dynamical role. In
1964 Gürsey and Radicati gave dynamics to spin by
combining the two spin-1⁄2 degrees of freedom with
the three flavor degrees of freedom to form a larger
SU(6) symmetry.8 Their model placed the three-
quark baryons in a totally symmetric configuration,
which, as described in box 1, corresponds to a 56D
representation of SU(6). Such an assignment had the
success that, when viewed in terms of flavor and
spin, the members of the 56D representation reduce
to 8 spin-1⁄2 particles (16 degrees of freedom) and 10
spin-3⁄2 particles (40 degrees of freedom), precisely as
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The group SU(N) is in many ways like the group of N × N rotation
matrices, except that in SU(N), the matrices and the vectors on
which they act have complex values. The S in SU(N) stands for
“special,” meaning that the matrices have unit determinant, just
as for rotation matrices. The U denotes “unitary,” meaning that
the matrices preserve vector normalization. (Rotation matrices
preserve the length of real-valued vectors; those matrices are
called orthogonal.)

In light of the discussion in the main text, consider an SU(6)
transformation acting on the three-indexed product qiqjqk, a
baryon comprising three quarks. There are 6 × 6 × 6 = 216 ele-
ments of that product form, and the SU(6) transformations mix
them up. However, group theory teaches us that if the 216 ele-
ments are organized correctly, the SU(6) transformations will con-
nect only smaller collections called irreducible representations.

In general, the irreducible representations of SU(N)—and
also of the N-object permutation group—are labeled by simple
figures called Young diagrams. Panel a of the figure shows the
diagrams for irreducible representations corresponding to
three-quark combinations. The one with horizontally arranged
boxes symbolizes the totally symmetrized combination of
quarks, the one with vertically arranged boxes corresponds to
the totally antisymmetric combination, and the two others de-
note copies of a representation with more complicated symme-
try properties.

The dimension of any SU(N) representation is given by the
hook rule;18 panel b of the figure gives a couple of explicit calcu-
lations, including one for the irreducible symmetric representa-
tion of SU(6) proposed for baryons by Feza Gürsey and Luigi

Radicati and described further in the text. According to the hook
algorithm, the dimension is obtained from separate calculations
of a numerator and a denominator. To get the numerator, start
with N in the upper-left box of the diagram, add 1 to each box
going to the right and subtract 1 for each box going down. Then
fill in the diagram starting from the left and adding 1 to each
box as you move right. The numerator is the product of all the
numbers in the filled-in diagram. The denominator is the prod-
uct of the hook values. The hook belonging to a specific box is a
line that enters the box horizontally from the right and exits it
vertically going down. The number of boxes the hook passes
through is the hook’s numerical value.

Gürsey and Radicati’s assignment of three-quark baryons to
the symmetric 56-dimensional irreducible representation was in
some ways a success. But the symmetric combination was in vi-
olation of the spin–statistics theorem. That was the paradox
confronting me in 1964.
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Box 1. Here comes the SU(N)



needed for the low-mass baryons. Further, Mirza
Bég, Benjamin Lee, and Abraham Pais calculated the
ratio of the proton and neutron magnetic moments
in the SU(6) model and found it to be −3⁄2, within 3%
of the measured value.9

Those successes, however, were attended by a
paradox. Because the 56D representation is totally
symmetric, the wavefunction for three-quark baryons
is unchanged when identical quarks are permuted.
But according to the spin–statistics theorem, the
spin-1⁄2 quarks must obey Fermi statistics; permuta-
tions of identical quarks should multiply the wave-
function by ±1. Something was amiss.

A resolution skeptically received
By 1964 I knew there were possibilities for identical
particle statistics other than Bose and Fermi. I sug-
gested that the way to get around the symmetry of
the 56D representation was to introduce a new three-
valued charge carried by quarks, now called color.10

The idea is that if the color part of the wavefunction
is antisymmetric under quark exchange, then so is
the total wavefunction—a product of the symmetric
space-spin-flavor wavefunction and the antisymmet-
ric color wavefunction—as required by the exclu-
sion principle. Moreover, if the three-quark baryon
wavefunction is fully antisymmetric with respect to
the color charge, then it is unchanged by SU(3) ma-

trices that mix color. Such states are known as color
singlets (box 2 provides additional pedagogic de-
tail). I called this model for baryons11 the “symmet-
ric quark model.”

At the time, I introduced color using parastatis-
tics of order three to construct Bose and Fermi states.
Such states, as Daniel Zwanziger and I showed a 
little later, are in one-to-one correspondence with
color singlets.12 In that same work, we demonstrated
that color provided a rationale for the phenomenon
that all low-mass states are composed of three
quarks (for baryons) or a quark and an antiquark
(for mesons).

A new color charge was not the only proposed
solution to the statistics paradox. Other physicists
assumed a complicated ground state, invented var-
ious complicated models, or assumed that quarks
are not real particles but only a mathematical device.
None of those attempts were successful.

I was excited by the color model and predicted
the spectrum of excited states of baryons based on the
new color degree of freedom.10 Over about 10 years,
the patterns that I found from the color model were
confirmed by the accumulating data on baryon spec-
troscopy, the only test for the existence of color at that
time. A later theoretical paper with Marvin Resnikoff11

and independent work by Nathan Isgur and Gabriel
Karl and by Dan-Olof Riska and collaborators con-
firmed the symmetric quark model for baryons.13

Fifty years later it still agrees well with the data.
In 1964 quarks with fractional electric charges

that had never been seen—and that have not been
seen to this day—were unacceptable to many physi-
cists. To suggest that those quarks carry a new hid-
den color charge only increased the level of skepti-
cism. The response of J. Robert Oppenheimer, who
was my host at the Institute for Advanced Study,
was typical. When I asked him if he had read my
paper, he said, “It’s beautiful.” I was elated. My ela-
tion was, however, short-lived, because Oppen-
heimer’s next statement was, “but I don’t believe a
word of it.” At the time many physicists shared Op-
penheimer’s disbelief.

In 1965 Moo-Young Han and Yoichiro Nambu
introduced a model in which an SU(3) color group
is explicit.14 They avoided fractional electric charges
by introducing nine quarks with integer charges,
but they paid the price that color was not an exact
symmetry. (Moreover, the notion of integer quarks
ended up conflicting with later experimental evi-

dence.) Han and Nambu also made two important
suggestions. The first was that color could be gauged,
which means that the theory describing color is un-
changed by gauge transformations analogous to
those of electrodynamics. (The historical develop-
ment of gauge theories is discussed by C. N. Yang,
PHYSICS TODAY, November 2014, page 45.) The sec-
ond was that the color interaction could be medi-
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The particles made up from quarks are called hadrons, from the Greek
word for thick or stout. They come in two principal varieties. Baryons, like
the proton or neutron, are made of three quarks; mesons, like the pion,
comprise a quark and an antiquark. Some recent experimental evidence
suggests that there may exist exotic hadrons made up of four quarks (see
the Quick Study by Steve Olsen, PHYSICS TODAY, September 2014, page 56).

Quarks possess a quantum number called color that comes in three
varieties: red, green, and blue. The three colors are transformed into each
other by the symmetry group SU(3)c (the subscript stands for “color”),
which in many ways is like the familiar rotation group; see box 1 for ad-
ditional details. Their colored constituents notwithstanding, all hadrons
must be colorless, which means they are built from combinations of
quarks that are invariant under SU(3)c transformations. Those colorless
states are also called singlet states; in the language introduced in box 1,
they are one-dimensional irreducible representations of the SU(3)c group.

According to the discussion in that box, a totally antisymmetric com-
bination of three quarks qaqbqc remains antisymmetric under SU(3)c; here
the subscripts are indices giving the quark colors. Because those color in-
dices assume one of only three values, there is only one possible totally
antisymmetric combination—the unique combination of three quarks
that is unchanged by SU(3)c. Thus, for baryons to be colorless singlets,
the quarks they are built from must be totally antisymmetric as far as
color is concerned. The Pauli principle insists that the rest of the baryon
wavefunction be totally symmetric under quark exchange.

The antiquarks (denoted with overbars) that live in mesons can, like
the quarks, have one of three colors: antired, antigreen, or antiblue. Al-
though quarks and antiquarks are both three-indexed objects, they are
acted on differently by SU(3)c. Antiquarks are analogous to the covariant
vectors of special relativity, which are boosted differently than are the
contravariant vectors analogous to quarks. And just as in special relativ-
ity, combinations like the “dot-product” interval Σμ X

μXμ are unchanged
by boosts, in particle theory, the sum of quark–antiquark pairs Σa ‾qaqa

yields a colorless meson.

Box 2. Colorless combinations of colored quarks

“It’s beautiful,” J. Robert

Oppenheimer said, “but I

don’t believe a word of it.”



ated by an octet of gluons, much as how in quantum
electrodynamics the interaction of charged particles
is mediated by photons. The three-valued charge in-
troduced by me in 1964 and the gauged theory in-
troduced by Han and Nambu in 1965, taken together,
contain the basis of quantum chromodynamics
(QCD), today’s theory of the strong interaction.

Acceptance of quarks and color
The decade following the introduction of quarks
and color saw increasing evidence for the reality of
quarks. Experiments at SLAC in which electrons
were scattered off protons and neutrons revealed an
internal structure to those “fundamental” particles,
much as the Rutherford experiment revealed the in-
ternal structure of the atom. The successes of the
standard model of particle physics, with its (at the
time) three quarks built into it, also argued for the
reality of quarks. As early as 1973, Harald Fritzsch,
Gell-Mann, and Heinrich Leutwyler summarized
the advantages of a “model based on colored quarks
and color octet gluons.”15 But when so-called neu-
tral currents were discovered in that same year, the
standard model ran into a problem; with three
quarks, it unambiguously predicted effects that were
not observed.

Glashow, John Iliopoulos, and Luciano Maiani
had actually floated an idea in 1970 that would sup-
press those later unobserved effects: a fourth quark,
now called the charm quark.16 And on 11 November
1974, independent teams at Brookhaven National
Laboratory and SLAC announced the discovery of
a new particle, the J/ψ, with just the right mass to be
a meson built from a charm and anticharm quark.
Ten days later, a second charm–anticharm meson
was discovered, the ψ′. With the discovery of those
two mesons in the “November revolution” of 1974
and subsequent studies quickly carried out, the case
for the reality of quarks and their accompanying
color was sealed.17

Even before the November revolution, two dif-
ferent phenomena had suggested the reality of color
in a particularly transparent fashion. One is the decay
of the neutral pion into two photons. Figure 2 shows
the lowest-order Feynman diagram for the process;
its central feature is a triangle representing virtual
quarks. Each quark color contributes equally to the
decay amplitude symbolized by the diagram, which
thereby picks up a factor of three relative to the re-
sult for a theory with color-singlet quarks. The
decay rate is thus multiplied by nine, in agreement

with experiment. The second phenomenon is elec-
tron–positron collisions; of specific interest is the
cross section (in essence, the scattering probability)
for the collision to yield hadron products as com-
pared with the cross section for the collision to yield
a muon–antimuon pair. Again, the color factor of
three is needed for theoretical calculations to agree
with the experimental data. 

To lowest order, my parastatistics model and
QCD agree in their predictions for the neutral-pion
decay and electron–positron annihilations. But at
higher orders, the parastatistics model fails to agree
with experiment: QCD is the correct theory of the
strong interactions. As its name suggests, color enters
in a crucial way in the theory, whose many success-
ful predictions have further confirmed the existence
of the color degree of freedom.

Early in my professional career, I spent much
time pursuing “useless” knowledge—an under-
standing of quantum statistics that does not occur
in nature. But those studies led me to propose the
idea of quark color, a concept that has proved to be
quite useful. I imagine that if Abraham Flexner had
been able to hear the story of color’s origins, he
would have been pleased.

This article is an elaboration of a talk I gave at the 50 Years
of Quarks and Color symposium, held at the University of
Maryland on 11–12 April 2014.
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Figure 2. The decay of a neutral pion into two
photons involves virtual quarks, the entities depicted
with arrows in this Feynman diagram. Because
quarks come in three colors, the measured decay
amplitude is thrice what it would be in a theory
with colorless quarks. 


