eat conduction is familiar to us all and
yet requires a wide range of physics—
statistical mechanics, crystallography,
and quantum mechanics among them —
to fully explain. At the macroscale, heat
conduction can be described as a diffusion process
in which energy moves along a temperature gradi-
ent. The heat flux dissipated by the gradient depends
on a material property, the thermal conductivity, as
described by the constitutive relation, Fourier’s law.
The heat equation, which is derived from Fourier’s
law and the conservation of energy, describes the
distribution of temperature over space and time.
Typically, the heat equation is assumed to be the
end of the story for thermal conduction. However,
the macroscopic theory leaves some fundamental
questions unanswered. For example, why is dia-
mond an exceptional thermal conductor, whereas
gallium arsenide, a material with the same crystal
structure, is only an average one? Lattice vibrations
have long been understood as being responsible for
heat conduction in a solid, but among the broad
spectrum of the vibrational modes, which are pri-
marily responsible for heat conduction? And what are
the typical propagation lengths of those vibrations?
The answers to such questions are of consider-
able importance as electronic components become
ever smaller and faster. In many applications—
including LED lighting, high-power transistors, ul-
trasensitive radiation detectors, and thermoelectric
waste-heat recovery —a microscopic view of thermal
transport is essential. To list just one example, the rise
in temperature near the active region of a transistor
can be significantly higher —by tens of kelvin—than
predicted by Fourier’s law, and that discrepancy
affects the performance and reliability of devices
ranging from smartphones to power amplifiers.

Ingredients for a theory

Starting nearly a century ago with Peter Debye,
who first attributed heat conduction in dielectric
crystals to delocalized lattice waves whose quanta
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Recent advances in computational and

spectroscopic tools offer new insights into
( the nature of thermal conduction at ever-
finer length scales and ways to control it.
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are called phonons, researchers developed many as-
pects of a microscopic theory. Subsequent work by
Rudolf Peierls,? Paul Klemens,® and others led to the
Boltzmann transport equation, which describes the
transport of phonons as particles, and to an im-
proved understanding of mechanisms by which
phonons interact with each other and are scattered
by such lattice imperfections as point defects and
grain boundaries.

Based on those results, Joseph Callaway* and
others introduced models in 1959 that express the
thermal conductivity in terms of quantities such as
group velocities and mean free paths (MFPs). In the
simplest form of those models, the thermal conduc-
tivity relates to microscopic properties of the lattice
through the kinetic equation

k=3 [C,.A 40
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in which C, is the frequency-dependent specific
heat, v, is the group velocity, A is the phonon MFF,
and w is the phonon frequency. The specific heat and
group velocity are set by the phonon frequency
spectrum or, equivalently, the dispersion (shown in
figure 1), which can be measured using inelastic
neutron scattering and other techniques.

At cryogenic temperatures, phonons don’t ex-
perience any scattering events that would random-
ize their motion, so they propagate as lattice waves
and their dispersion is governed by the crystal struc-
ture and interatomic harmonic potential. Around
room temperature and above, though, phonon scat-
tering is pervasive, which leads to particle-like
diffusion. The strength of the scattering can be
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described by the MFPs, the magnitudes of which
vary widely with phonon frequency and are set by
perturbations to the perfect harmonic lattice from
phonon—phonon interactions or crystal defects.

Although the MFPs are key to understanding
the origin of a solid’s thermal conductivity, they are
difficult to measure or calculate directly, unlike spe-
cific heat and group velocity. Today, researchers
often infer the MFPs by adjusting the fitting param-
eters of semiempirical models until they match the
available experimental data. That approach can yield
useful insight but is limited. First, it is not predictive,
because the fitting parameters must be determined
using experimental data before any conclusions can
be drawn. Second, the inferred MFPs strongly de-
pend on assumptions made in the fitting and thus
are difficult to determine unambiguously. Separat-
ing multiple scattering mechanisms with different
temperature and frequency dependencies is even
more challenging. As a result, phonon MFPs remain
unknown in most crystals.

Indeed, the difficulty of studying thermal
phonons caused phonon MFPs to remain a mystery
for decades. Unlike electrons, phonons have no
charge and cannot be controlled by external electric
or magnetic fields. Unlike photons, phonons have
no benchtop source that can produce them at a par-
ticular frequency, nor can an arbitrary phonon mode
be easily probed. Furthermore, whereas photons in-
teract very weakly with each other, the nonlinear
interactions between phonons are comparatively
strong and responsible for thermal resistance at room
temperature and above. Roughly speaking, studying
phonons is akin to studying light using only light
bulbs, without spectrometers, and with strong inter-
actions between the photons. It’s no surprise that ther-
mal phonons have remained so poorly understood.

Fortunately, recent advances in computational
and experimental tools are providing a new win-
dow on the nature of heat conduction and how to
manipulate or engineer heat flow in a material. This
article discusses a few of those advances.

Computing phonons

Historically, researchers have studied thermal con-
ductivity using semiempirical models. Preferable
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Figure 1. The dispersion curves of boron arsenide
(black) and silicon (red) differ in ways that reveal why
BAs has an exceptionally high thermal conductivity
(~2000 W/m:-K), about an order of magnitude higher
than that of Si. High phonon scattering rates reduce
the thermal conductivity. First, the large bandgap
between the low-frequency acoustic phonons (broken
lines) and higher-frequency optical phonons (solid) in
BAs inhibits scattering among the different types. Si ex-
hibits no such bandgap. Second, the acoustic branches
in BAs are bunched together: Compare the frequency
bandwidth of the longitudinal (dotted, LA) and two
transverse (dashed, TA, and TA,) acoustic modes in Si to
those in BAs. The bunching restricts the phase space for
scattering between acoustic phonons, and again inhibits
scattering. I, K, and X are various crystal symmetry
points in reciprocal space. (Adapted from ref. 6.)

would be to calculate thermal conductivity from
first principles—based only on a crystal’s atomistic
structure—and thereby eliminate the fitting param-
eters. Such an approach, using density functional
theory (DFT) to calculate interatomic potentials, has
in fact been widely adopted and applied with
tremendous success since 2007, when Boston Col-
lege’s David Broido and coworkers proposed it for
semiconductors and insulators.?

Density functional theory has long been used to
calculate phonon dispersions, but thermal conduc-
tivity calculations are harder: The thermal resistance
of pure crystals is determined by the anharmonic
component of the interatomic potential and thus re-
quires extracting the cubic force constants, a much
more challenging calculation than determining the
harmonic force constants that set the phonon disper-
sion; see the box on page 29. Only due to advances
in the availability of ab initio codes and computing
resources have those calculations become possible.
Researchers have applied the approach to materials
ranging from three-dimensional crystals such as sil-
icon and lead telluride to 2D ones such as graphene
and molybdenum sulfide. The results have trans-
formed our understanding of heat conduction.

More specifically, the ab initio DFT approach
has helped answer a fundamental question: What
makes a good dielectric thermal conductor? Only a
few high thermal-conductivity crystals, in which
heat conduction is due to phonons, are known to sci-
entists. Si, silicon carbide, and diamond are among
them. Each of those materials has a high sound ve-
locity —a signature of stiff interatomic bonding—
and is composed of light elements. Those two basic
characteristics provide a rule of thumb for gauging
the thermal conductivity of other crystals. As a
converse example, the low-thermal-conductivity
material PbTe consists of heavy atoms and has a
low sound velocity, which make it ideal as a ther-
moelectric (see the article by Gerald Mahan, Brian
Sales, and Jeff Sharp in PHYSICS TODAY, March 1997,
page 42).

Although those criteria are useful, they yield no
information about the scattering mechanisms that
limit phonon MFPs. It’s perhaps no surprise that no
one has identified any new highly conductive crys-
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tals in 40-some years. Last year Lucas Lindsay and
Thomas Reinecke from the US Naval Research Lab-
oratory, together with Broido, leveraged the predic-
tive power of ab initio techniques to propose a new
and illuminating set of microscopic criteria for ther-
mal conductors based on an analysis of the com-
pound boron arsenide.® By traditional reasoning,
one would expect BAs to have unexceptional ther-
mal conductivity comparable to that of Si, around
200 W/m-K. Ab initio calculations, however, predict a
value for BAs comparable to that of diamond, around
2000 W/m-K, which puts it in very rare company.

The high thermal conductivity can be ex-
plained by the unique vibrational properties of BAs,
illustrated by its dispersion curve in figure 1.
Acoustic phonons, or low-frequency vibrations of a
few terahertz over multiple primitive unit cells,
carry most of the heat in a pure crystal lattice. The
thermal resistance in the crystal arises from three-
phonon scattering, in which one phonon decays into
two or two phonons combine into one, with the
strength of the interaction determined by cubic in-
teratomic force constants. But for the scattering to
occur, each three-phonon process must satisfy mo-
mentum and energy conservation.

In most crystals like Si, the scattering events
often involve an optical phonon—that is, a high-
frequency vibration of the atoms within a single
primitive unit cell. For example, a common scatter-
ing process consists of an optical phonon decaying
into two acoustic phonons. But in BAs, many of
those processes are forbidden because of the excep-
tionally large energy gap between acoustic and op-
tical branches of the dispersion curve: The com-
bined energy of two acoustic phonons is often
smaller than that of a single optical phonon. The
large energy gap comes from the difference in
atomic mass between boron and arsenic.

The unique profile of the acoustic branches,
which are bunched together in figure 1, further re-
strict scattering. Three phonons on the same branch
cannot simultaneously satisfy energy and momen-
tum conservation. If all acoustic phonons have the
same dispersion, no acoustic phonon scattering is
possible; and as the different phonons gradually
bunch together, the phase space available for three-
phonon scattering involving only acoustic phonons
becomes increasingly restricted. For the particular
case of BAs, midrange acoustic phonons are mostly
excluded from scattering with either acoustic or op-
tical phonons. The result is that phonons have long
MEFPs that exceed 1 pm.

The exceptionally high thermal conductivity of
BAs can therefore be attributed to vibrational prop-
erties that limit the number of possible three-
phonon processes. One can generalize the lesson of
BAs to identify an important new trait for good ther-
mal conductors: They should minimize the number
of three-phonon interactions, a task that can be
achieved with a large gap between acoustic and op-
tical phonons and with acoustic phonon bunching.

Measuring the spectrum

Obtaining such microscopic insights experimen-
tally has been all but impossible in the absence of
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A microscopic theory of phonons

The ab initio approach to thermal conductivity is based on solving the
Boltzmann transport equation (BTE) with input from density functional
theory (DFT).* The BTE governs a distribution function ¥ that describes
the probability of finding a phonon in real space and phase space. Under
the assumption of a uniform temperature gradient 97/0x, along the x,
direction, the equation is given by

oT ano Z +
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where n, is the Bose-Einstein distribution, W}, are the three-phonon
scattering rates, v, is the group velocity, T is the absolute temperature,
and A denotes a particular phonon mode with some wavevector and po-
larization. The left-hand side of the equation describes the change in
phonon population due to advection induced by the temperature gra-
dient, and the right-hand side is the three-phonon collision term due to
phonon-phonon interactions. The thermal conductivity k can easily be
determined once Y, the solution to the equation, is known.

The calculation is clearly quite formidable, and in the early days of
thermal conductivity studies, before the development of quantum me-
chanical simulation packages and powerful computers, it was essentially
impossible to solve. The first step is to determine the scattering rates
W;5.,» Which are given by Fermi’s golden rule. The golden rule, in turn,
requires the cubic interatomic force constants, which are defined as the
third derivative of the total energy with respect to atomic displace-
ments. Of course, calculating those force constants requires an accurate
interatomic potential, which can be obtained from standard DFT codes
such as Quantum Espresso or VASP. A frequently used approach to ob-
tain the cubic force constants is to calculate the harmonic force con-
stants while atoms in the computational cell are systematically displaced.
The cubic force constants can then be calculated as the finite-difference
derivative of the harmonic force constants. They then give the scattering
matrices on the right-hand side of the equation above.

The next step is to solve the BTE, itself a daunting task. Again, the
principle difficulty is in the collision term, which couples triplets of
phonons together by three-phonon scattering. Identifying all of the pos-
sible scattering processes requires many searches through the entire
computational phase space, which consists of hundreds of thousands of
discrete points. The collision term can be written as a linear system of
equations with ¥, the unknown distribution function, as the solution.
The number of elements in the matrix for that linear system is equal to
the square of the number of phase-space points—on the order of tens
of billions of elements. Solving the equation with matrix inversion meth-
ods is certainly possible but computationally expensive.

Fortunately, a much faster method exists. Rather than solving a linear
system, the BTE can be solved by iteration—a prior guess of the solution
is used to update the solution until convergence is achieved. The first
guess turns out to be the so-called relaxation time approximation of the
BTE. After tens of iterations, depending on the material, the procedure
converges and ¥ is determined.

Finally, the thermal conductivity tensor k_, can be obtained directly
from

1 -Wpa

kaﬁ = V ZA: thva/\no(”o i 1)(W§xﬁ)/
where Vis the volume of the crystal, w is the phonon frequency, and v,,
is the group velocity in the x, direction. However, the key application of
the ab initio approach is not simply calculating thermal conductivity but
understanding its origin in a material. At the end of the procedure, the
solution of the BTE reveals not only the contribution of every phonon to
thermal conductivity over all phase space but also which phonons cou-
ple to which other phonons.
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any benchtop technique able to excite and probe ar-
bitrarily chosen thermal phonon modes. In a typical
benchtop experiment, a local heater excites a broad
spectrum of phonons, and their integrated effect
would then be measured as a temperature differ-
ence, which averages out the microscopic informa-
tion of interest.

Recently an experimental technique has emerged
that enables the direct measurement of microscopic
properties using readily available equipment. The
technique, MFP spectroscopy,” measures the distri-
bution of MFPs, or the accumulated thermal con-
ductivity as a function of MFP, for a wide variety of
materials. The MFP distribution is a useful quantity
because it reveals which phonons are the primary
heat carriers and the key length scales at which a
material’s thermal conductivity decreases from its
bulk value due to scattering from grain boundaries
or sample boundaries.®

Mean free path spectroscopy is based on a sim-
ple principle: The heat flux dissipated by a given
temperature difference depends on how a thermal
length scale, the distance over which a temperature
difference exists, compares with the MFPs. If that
thermal length is much larger than the MFPs, the
heat transport is diffusive and well described by
Fourier’s law. At the other extreme, when the ther-
mal length is much smaller than the MFPs, phonons
move ballistically, and heat transport occurs by
phonon radiation in an exact analogy to thermal
radiation from a blackbody.’ As the thermal length
decreases and more of the phonon spectrum trans-
ports heat ballistically in the transition from the
diffusive regime, Fourier’s law gradually breaks
down.

As outlined in figure 2, MFP spectroscopy con-
sists of observing the discrepancies in heat flux from
the law’s prediction as the thermal length is system-
atically varied from the diffusive to ballistic
regimes. To change that thermal length, one can, for
example, change the diameter of a heating laser
beam or, as discussed in the next paragraph, the
fringe spacing of two interfering laser beams. The
discrepancies in heat flux are observed as a thermal

conductivity that appears to vary with the thermal
length.”

To quantitatively understand the physics of
MFP spectroscopy, consider a so-called transient
grating spectroscopy experiment in which a sample
is impulsively heated with a sinusoidal pattern of
variable spatial period created by the interference
of two laser beams. The transient thermal decay is
measured using a probe laser, and the in-plane
thermal conductivity is extracted as the only un-
known parameter in a thermal model used to fit the
decay curve.

Jeremy Johnson (now at Brigham Young Uni-
versity) and colleagues recently used the approach
to study thin Si membranes with thicknesses of a
few hundred nanometers.® The thermal conductiv-
ity measurements shown in figure 3a exhibit a puz-
zling trend. Although the conductivity is a material
property and should thus be a constant, it plummets
when the grating’s period is made smaller than
5 um. The observation can be explained by account-
ing for the possibility that some phonons have MFPs
comparable to the external thermal length set by the
grating period. One of us (Minnich) recently used
the Boltzmann transport equation (BTE) to examine
the thermal transport that occurs in the experi-
ment."! The BTE governs the evolution of a distribu-
tion function that describes the probability of find-
ing a phonon in a region of phase (or reciprocal)
space and real space, as discussed in the box, and it
plays an important role in many other scientific
fields, including astronomy, neutron transport, and
gas kinetics. The BTE accurately describes the trans-
port of phonons even at length scales much smaller
than their MFPs, the situation in which Fourier’s
law is no longer valid.

The key observation from that work is shown
in figure 3b, which plots the calculated spectral heat
flux versus phonon MFP for a grating wavelength
comparable to some MFPs. Although Fourier’s law
predicts that long-MFP phonons contribute signifi-
cantly to heat conduction, the calculated heat flux
from phonons with MFPs comparable to the tran-
sient grating period is far smaller than that.

Thermal length

P— — &
| |

Diffusive

Ballistic

Figure 2. Mean free path spectroscopy. The heat flux dissipated by a fixed temperature difference depends
on how the length over which the temperature difference exists compares with the phonon mean free paths.
MFP spectroscopy consists of systematically varying that thermal length, typically using a laser beam whose
diameter can change, and observing the transition from the diffusive to the ballistic regimes. From those
observations the underlying MFP distribution can be obtained. The white arrows in the figure represent the

average MFP relative to the thermal length.
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Figure 3. The thermal conductivity k. of two thin (390-nm) membranes of silicon (a), normalized to their
bulk value k., is measured using transient grating spectroscopy, which heats the sample with the interfer-
ence pattern between two laser beams. The inset illustrates the membrane’s initial sinusoidal profile of
alternating hot (red) and cold (blue) fringes whose temperature decay is measured in time. The thermal
conductivity rapidly decreases as the grating’s spatial period is reduced below 5 pm because some phonons
have mean free paths (MFPs) comparable to that period. The scattering of phonons at membrane boundaries
prohibits the measured conductivity from ever reaching the bulk value. (Adapted from ref. 10.) (b) Plotted
here for a grating period of 1.5 um, the spectral heat flux as a function of MFP predicted by the Boltzmann
transport equation (BTE) explains the measured reduction in thermal conductivity at low grating periods.
Fourier’s law breaks down for long-MFP phonons, which actually contribute far less to the thermal conductivity

than the law predicts. (Adapted from ref. 11.)

The physical discrepancy turns out to be useful
because experimentalists can exert control over the
phonons in an experiment. Rather than measure
the contribution of all phonons to heat flux, they
can instead examine the contribution of different-
frequency phonons by systematically varying the
thermal length via the grating period. That extra de-
gree of freedom provides access to the phonon spec-
trum itself rather than the averaged result.

Although the MFP spectroscopy technique is
young, it has already produced important insights
that agree with predictions made by ab initio meth-
ods described in the box. A particularly interesting
result was the demonstration of the importance of
low-frequency, long-MFP phonons to thermal trans-
port in such semiconductors as Si, despite their
small contribution to specific heat. In bulk crys-
talline Si, some MFPs are hundreds of microns long’
even at 100 K, and phonons with MFPs longer than
a micron contribute 40% of the total thermal con-
ductivity at room temperature.’?

Phononic crystals

The MFP is a critical microscopic property, but it is
not the only factor influencing heat conduction by
phonons. According to the equation on page 27,
heat capacity and group velocity are also impor-
tant, which raises a question: Is it possible to ma-
nipulate thermal conduction by changing those
parameters?

At first sight it does not appear easy, because
the dispersion relations that set both the group
velocity and heat capacity are determined by the
microscopic details associated with atomic bonding
in a material. However, the wavelengths of many
phonons involved in thermal conduction exceed the
lattice constant. So if the material in question is
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structured at some longer length scale—by drilling
a periodic array of holes, say, through the lattice—
the phonons with wavelengths around that length
will interfere just as x rays do in crystals. Such struc-
tures are called phononic crystals,” in analogy with
the better-known photonic crystals, whose periodic
features control their interaction with light. The in-
terference in phononic crystals modifies the band
structure of the long-wavelength phonons enough
that one can engineer changes in both the density
of states, which affects heat capacity, and the group
velocity.

What length scale should one use? Because the
spectral energy density of low-frequency thermal
phonons has the same Planck distribution shape
as electromagnetic thermal radiation from a black-
body, the strongest effect on thermal conduction is
produced by disturbing phonons near the maxi-
mum energy density. That maximum follows the fa-
mous Wien’s displacement law, which states that the
wavelength of the dominant phonons is inversely
proportional to temperature. At room temperature
that wavelength is on the nanometer scale; but by
cooling the material down to cryogenic tempera-
tures, the dominant wavelengths increase to the mi-
cron scale. Modern lithographic techniques can thus
make phononic crystals with periodicities that cor-
respond to the wavelengths of the dominant ther-
mal phonons.

A group led by one of us (Maasilta) followed that
line of reasoning last year and studied thermal con-
ductance in 2D phononic crystals (PnCs) at subkelvin
temperatures." Figure 4a shows a scanning electron
micrograph of a sample consisting of an array of
holes etched in a half-micron-thick silicon nitride
membrane. We compared two PnCs having differ-
ent periodicities with an unetched sample and
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Figure 4. A two-dimensional phononic crystal, fabricated by drilling holes in a silicon nitride membrane

(a) and imaged using scanning electron microscopy. The heater and thermometer are tunnel junctions.

(b) The observed emitted phonon power P versus temperature T for a full, uncut membrane (black squares)
and two phononic crystals (red circles and blue triangles) that differ in the hole lattice constant a. Though the
two crystals had the same amount of material removed to produce the holes, their thermal conductances
varied significantly, clear evidence of phononic effects. The two crystals’ T?* dependence of power on temper-
ature also varied from that of the uncut membrane, further evidence of phononic, coherent interference

effects. (Adapted from ref. 14.)

observed a strong reduction in thermal conduc-
tance—up to a factor of 30 —with a concurrent change
in the temperature dependence (from T°? to T2%), as
plotted in figure 4b.

Each PnC had the same amount of material re-
moved and therefore should have produced the
same reduction in thermal conductance, without
any change in temperature dependence, in the ab-
sence of phonon interference. Because no scattering
occurs at subkelvin temperatures, one can only con-
clude that coherent interference among phonons is
behind the modification to the band structure and
our observations.

From the numerical simulations, we were able
to calculate how the phonon density of states and
the average group velocity change in a PnC struc-
ture. The thermal conductance is proportional to the
product of the two factors, and according to the
calculations, both decrease in the frequency range
relevant at low temperatures. The most important
factor turns out to be the group velocity: Phonons
in the PnC structures slow down by about a factor
of 6. Curiously, one of the PnCs even exhibits a
bandgap—a frequency region devoid of phonons.
Nevertheless, the other PnC structure (without the
bandgap) exhibits a lower thermal conductance.
Thus the existence or size of a bandgap does not
seem to predict anything about thermal conduc-
tance. Work is in progress to understand what type
of structure most reduces the thermal conductance
and how large an effect is possible.

In the low-temperature regime, PnC structures
could be developed into ultrasensitive bolometric
radiation detectors—similar to the ones recently
used in the BICEP2 experiment to observe primor-
dial gravitational waves from the polarization fluc-
tuations of the cosmic microwave background (see
PHYSICS TODAY, May 2014, page 11). Researchers
have also studied whether phononic effects can be
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used to control thermal conduction at room temper-
ature. In that regime, applications include improv-
ing the performance of thermoelectric devices,
which benefit from reducing thermal conductivity
without reducing electrical conductivity.

To apply the results of low-temperature studies
to room temperature, however, the periodicity of
the PnC must be scaled down to nanometers. That’s
challenging but not out of reach. And the fact that a
substantial amount of heat is carried by phonons
with MFPs longer than a micron in some semicon-
ductors at room temperature offers hope that mod-
ification of the band structure can also be used to
engineer a material’s conductivity at higher temper-
atures. The field is too young to predict how those
manipulations will bear on applications, but one
thing is clear: The age-old problem of heat conduc-
tion has new tricks up its sleeve—even after 100
years of study.
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