ing as well as the challenges and opportunities faced by lighting designers working in a rapidly evolving marketplace. Author Nisa Khan's concise and unique perspective brings together key issues related to both the evolution and practice of next-generation lighting.

Khan, an independent R&D consultant, has an extensive background in solid-state lighting technology. She also has a profound understanding of the SSL industry and the technology's commercial applications. Her impressive research experience includes work at Bell Labs followed by a career that focused on solid-state technology development.

Understanding LED Illumination begins with a concise introduction to lighting metrics and design. It quickly introduces the technologies involved and the basic science behind LED lighting, and it offers a brief analysis of the current and future prospects of the LED industry. After that, it progresses nicely into devices and the materials and production issues associated with them. Khan then weaves that information into applications, introducing lighting design and the process of moving from conventional or "legacy" lighting to SSL.

Lighting designers and engineers will find the significant amount of material on measurements and related processes quite useful. The author includes a detailed discussion of LED photometrics, including the color rendering index (CRI) and other established standards for measuring color characteristics; with the advent of SSL, that topic is one of current industry debate. I was particularly impressed with the author's ability to explain some of the nuances of LED technology in a straightforward manner that will be easily understood by those newly acquainted with the industry.

Understanding LED Illumination would make an excellent textbook for teaching illumination engineering, architectural engineering, and other subjects related to next-generation lighting. The monograph is extremely well organized and its tables, charts, diagrams, and photographs effectively reinforce the concepts described by the text. It can also serve as a ready reference for those involved in the design, engineering, and marketing of SSL. I recommend it to anyone interested in SSL lighting, including, in particular, my lighting design students and the industry partners I work with as director of the California Lighting Technology Center at the University of California, Davis. I also commend the book to the fast-growing

cadre of technicians and engineers entering the SSL marketplace. Many of them are coming from peripheral or distant fields and could use this type of concise yet technically rich material.

I have only a couple of criticisms for Khan's otherwise excellent work. I would have liked to see the illustrations complemented by case studies of actual lighting retrofits or installations for various applications. I also would have liked to see more of the photos and diagrams enhanced with color, particularly given the subject material. The investment in more colorful graphics would be returned with an even more broadly appealing book.

Michael Siminovitch University of California, Davis

Our Mathematical Universe

My Quest for the Ultimate **Nature of Reality**

Max Tegmark Knopf, 2014. \$30.00 (432 pp.). ISBN 978-0-307-59980-3

Theoretical physicist Max Tegmark's Our Mathematical Universe: My Quest for the Ultimate Nature of Reality is sometimes delightful but often annoying, sometimes fascinating but other times

The author does present an engaging and informative overview of some profound aspects of cosmology-in particular, as they pertain to the origin and evolution of the universe. The figures are extremely well done and informative. I don't think I have seen inflation explained more clearly for a general audience.

Max Tegmark

Our

Mathematical

Universe

The presentation is informal and sometimes charming. But Tegmark, a professor at MIT, can be a little overdramatic, and he takes many side trips to relate stories of his life

and career. It's a matter of taste, of course, but after a while I found those two features distracting. A shorter, more straightforward book might not have been a bad thing.

Tegmark writes that the purpose of his book is to convince readers that the universe is a mathematical construct. To be clear, he is not merely discussing the use of mathematics in modeling physical phenomena, nor is he speculating about the "unreasonable effectiveness"

Post your jobs today at

www.physicstoday.org/jobs

of mathematics when applied to physical problems. Rather, he is arguing that the physical universe is itself an aspect of mathematics. I'm far from certain how one would construct a convincing argument for such a claim, but in my opinion, Our Mathematical Universe doesn't pull it off.

The main problem, I believe, is that the book's argument is circular. Tegmark assumes that mathematical objects defined by mathematical axioms—for instance, the real numbers and Lebesgue measure—are part of physical reality. Given that the abstract notions of real numbers and measure have the same status as, say, observations of the spectral lines of sodium, it is not too surprising to end up thinking that the universe is part of mathematics.

On occasion, Tegmark's assertion of the physical reality of mathematical constructs leads to difficulties. One example comes up in his discussion of the many-worlds interpretation of quantum mechanics. In that picture, observations that would give a random yes or no result in the usual Copenhagen interpretation instead give rise to two worlds, one having yes as the result and one having no.

The worrisome argument involves mathematician Émile Borel's notion of normal numbers-numbers that in some rigorous sense could be regarded as random. Borel proved that except for a set of "zero size" (zero Lebesgue measure for the experts), all real numbers are normal. Tegmark invokes that theorem to explain why we never encounter a world in which yes or no experiments that are supposed to give random-seeming results actually give results that look nonrandom. He mentions none of the rigorous mathematics involved in Borel's demonstration, but instead dramatically exclaims that Borel confronted mathematicians "with a theorem at the heart of classical mathematics that could be reinterpreted in terms of probabilities even though the theorem itself never mentioned probabilities at all." In fact, the word probabilités is in the title of Borel's paper.

In any case, the real issue is that Tegmark regards the theorem as a result about physics. That's problematic because although the normal numbers make up almost everything, almost none of them are known explicitly. Never mind that you can only run a finite number of experiments; given an infinite string of random-seeming physical results expressed as a binary sequence of 1 (yes) and 0 (no), you can't

determine if it actually represents a normal number, as the Borel theorem would predict.

But perhaps the most important question about Tegmark's claim is, Does it matter, except perhaps to those interested in metaphysics? Most of his assertions can't be tested, and whether you accept them as true or not seems to make no difference to the future development of physics.

> Francis Sullivan Institute for Defense Analyses Bowie, Maryland

new books_

acoustics

The Technology of Binaural Listening. J. Blauert, ed. Springer, 2013. \$179.00 (511 pp.). ISBN 978-3-642-37761-7

astronomy and astrophysics

Accretion Processes in Astrophysics. I. González Martínez-País, T. Shahbaz, J. Casares Velázquez, eds. Cambridge U. Press, 2014. \$120.00 (294 pp.). ISBN 978-1-107-03019-0

Astronomical Measurement: A Concise Guide. A. Lawrence. Springer, 2014. \$89.99 (192 pp.). ISBN 978-3-642-39834-6

Astrophysical Techniques. 6th ed. C. R. Kitchin. CRC Press/Taylor & Francis, 2014. \$79.95 (536 pp.). ISBN 978-1-4665-1115-6

Fifty Years of Seismology of the Sun and Stars. K. Jain et al., eds. Astronomical Society of the Pacific, 2013. \$77.00 (416 pp.). ISBN 978-1-58381-840-4

New Trends in Radio Astronomy in the ALMA Era: The 30th Anniversary of Nobeyama Radio Observatory. R. Kawabe, N. Kuno, S. Yamamoto, eds. Astronomical Society of the Pacific, 2013. \$77.00 (431 pp.). ISBN 978-1-58381-836-7

Observing Photons in Space: A Guide to Experimental Space Astronomy. 2nd ed. M. C. E. Huber et al., eds. Springer, 2013. \$279.00 (731 pp.). ISBN 978-1-4614-7803-4

Progess in Physics of the Sun and Stars: A New Era in Helio- and Asteroseismology. H. Shibahashi, A. E. Lynas-Gray, eds. Astronomical Society of the Pacific, 2013. \$77.00 (581 pp.). ISBN 978-1-58381-842-8

Revealing the Heart of the Galaxy: The Milky Way and Its Black Hole. R. H. Sanders. Cambridge U. Press, 2014. \$39.99 (197 pp.). ISBN 978-1-107-03918-6

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. Ż. Ivezić, A. J. Connolly, J. T. VanderPlas, A. Gray. Princeton U. Press, 2014. \$95.00 (540 pp.). ISBN 978-0-691-15168-7

Tools of Radio Astronomy. 6th ed. T. L. Wilson, K. Rohlfs, S. Hüttemeister. Springer, 2013. \$119.00 (609 pp.). ISBN 978-3-642-

atomic and molecular physics

Dielectric Properties of Isolated Clusters: Beam Deflection Studies. S. Heiles, R. Schäfer. Springer, 2014. \$54.99 paper (100 pp.). ISBN 978-94-007-7865-8

Electrons in Molecules: From Basic Principles to Molecular Electronics. J.-P. Launay, M. Verdaguer. Oxford U. Press, 2014. \$89.95 (491 pp.). ISBN 978-0-19-929778-8

Physics with Trapped Charged Particles: Lectures from the Les Houches Winter School. M. Knoop, N. Madsen, R. C. Thompson, eds. Imperial College Press, 2014. \$54.00 paper (364 pp.). ISBN 978-1-78326-405-6

biological and medical physics

Diagnostic Endoscopy. H. Zeng, ed. CRC Press/Taylor & Francis, 2014. \$99.95 (256 pp.). ISBN 978-1-4200-8346-0

Discrete and Topological Models in Molecular Biology. N. Jonoska, M. Saito, eds. Springer, 2014. \$129.00 (524 pp.). ISBN 978-3-642-40192-3

Fundamentals of Pharmaceutical Nanoscience. I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A. Lalatsa, eds. Springer, 2013. \$119.00 (598 pp.). ISBN 978-1-4614-9163-7

Introduction to Fluorescence. D. M. Jameson. CRC Press/Taylor & Francis, 2014. \$79.95 (295 pp.). ISBN 978-1-4398-0604-3

Perspectives on Organisms: Biological Time, Symmetries and Singularities. G. Longo, M. Montévil. Springer, 2014. \$189.00 (283 pp.). ISBN 978-3-642-35937-8

The Radon Transform and Medical Imaging. P. Kuchment. SIAM, 2014. \$82.00 paper (240 pp.). ISBN 978-1-611973-28-0

chemical physics

Chemistry: The Key to Our Sustainable Future. M. Gupta Bhowon, S. Jhaumeer-Laulloo, H. Li Kam Wah, P. Ramasami, eds. Springer, 2014. \$259.00 (353 pp.). ISBN 978-94-007-7388-2

Crystalline State Photoreactions: Direct Observation of Reaction Processes and Metastable Intermediates. Y. Ohashi. Springer, 2014. \$129.00 (208 pp.). ISBN 978-4-431-54372-5

Electronic Structure of Metal Phthalocyanines on Ag(100). C. Krull. Springer, 2014. \$129.00 (146 pp.). ISBN 978-3-319-02659-6

Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. R.-Q. Zhang. Springer, 2014. \$54.99 paper (66 pp.). ISBN 978-3-642-40904-2

Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. U. I. Gaya. Springer, 2014. \$129.00 (213 pp.). ISBN 978-94-007-7774-3

Hierarchical Macromolecular Structures: 60 Years After the Staudinger Nobel Prize I. V. Percec, ed. Springer, 2013. \$259.00 (421) pp.). ISBN 978-3-319-01136-3