

NEW!! FAST SDD™

Count Rate >1,000,000 CPS

Resolution	Peaking Time
125 eV FWHM	4 µs
130 eV FWHM	1 μs
140 eV FWHM	0.2 μs
160 eV FWHM	0.05 μs

Choose your conguration **OEM Components**

Complete Spectrometer

Experimenter's Kit

Detector System

news notes

ore ice, more neutrinos. The South Pole neutrino detector that spans a cubic kilometer of Antarctic ice has observed high-energy neutrinos from outside our solar system. That spectacular announcement came from the IceCube team last year, based on three years of observation. "We still don't know what we are seeing," says principal investigator Francis Halzen of the University of Wisconsin-Madison. "The thing to do is get more events and figure out where they come from and what generates them."

To that end, the IceCube team wants to increase the detector's volume 5- to 10-fold to widen the net for spotting high-energy cosmic neutrinos. The main goal is to collect several hundred of the 1015-eV neutrinos per year. An expanded detector would also observe a handful of 1018-eV neutrinos each year, says Halzen. "That's not a large number, but they point to the source."

IceCube's sensitivity at higher energies would be improved by increasing the number and spacing of optical Cherenkov sensors drilled into the ice. In addition, the team wants to increase the sensor density in the existing detector. That project, called the Precision IceCube Next Generation Upgrade, would look for low-energy atmospheric neutrinos to determine the neutrino mass hierarchy and measure oscillation parameters.

The team estimates that the expansion and densification together would come to less than \$300 million-about the same as the existing facility. The Ice-Cube collaboration includes people from 43 institutions in 12 countries. \overrightarrow{TF}

The surface station for the IceCube neutrino detector at the South Pole.

Recently on online.

Singularities

Science writer Phil Schewe of the University of Maryland and NIST's Joint Quantum Institute reviews a new documentary about the eminent physicist and public servant Richard Garwin.

■ Enterprise

PHYSICS TODAY online manager Paul Guinnessy reports on the repercussions for NASA and the rest of the US space enterprise of the continuing political crisis in Ukraine.

▶ The Dayside

In his blog, Physics Today online editor Charles Day writes about the challenge of funding bold research, second-generation tech startups, and a new museum of science fiction in Washington, DC.

www.physicstoday.org