government and the failure to develop enabling technologies for fusion energy. There's at least a \$10 billion shortfall between historical US spending on fusion energy and the levels, in 2014 dollars, advocated by Dean's beloved 1976 plan for magnetic fusion confinement, which he developed as a director at the Energy Research and Development Administration (the predecessor of DOE). At the same time, the world has spent more than \$100 billion to achieve selfsustained fusion burn at laboratory scale. And, except for materials, fusionenergy technology is not yet clearly defined. So some will not accept Dean's reasons for the failure, thus far, of a clear path to fusion energy; rather, they'll say that self-sustained fusion in the laboratory is just really difficult and needs a more complete science basis, as Clery's book implies.

In comparing fusion to flight, Clery says, "Fusion is still at the wooden struts, wire and canvas stage of development." In others words, fusion research is likely a long way from delivering a useful product. So when will fusion energy arrive? Clearly, we don't know, but the story is not finished.

Heart of Darkness Unraveling the Mysteries of the Invisible Universe

Jeremiah P. Ostriker and Simon Mitton Princeton U. Press, 2013. \$27.95 (299 pp.). ISBN 978-0-691-13430-7

Can anyone explain to a general audience how astronomers converged on such an astonishing story as the now-

standard concordance model of cosmology, with its Big Bang and with large doses of dark matter and dark energy that only astronomers could "see" and most didn't want? Will the audience be-

lieve what it is told? And can the story keep the attention of the professional physicist? The answers are yes, as evidenced by Heart of Darkness: Unraveling the Mysteries of the Invisible Universe by Jeremiah Ostriker and Simon Mitton. Ostriker, a theorist, is a leader in modern cosmology, and Mitton, a physicistjournalist, is an excellent storyteller

The book's introductory material includes an overview of Hipparchus and the methods of the Greek astronomers. It also traces the beginnings of modern astronomy and physics and briefly introduces Albert Einstein's toolkit: quantum mechanics, special relativity, and general relativity; relevant calculations are banished to an appendix. Most of the introduction is conceptually very clear, one of the best versions I've seen.

The preliminaries are followed by a discussion of the discovery of the expanding universe—a history much more interesting and complex than is generally appreciated. For instance, the book mentions the race in 1912 between Vesto Slipher, with his 24-inch refractor, and William Campbell, with his 36-inch

telescope. Both men knew that measuring the spectra of galaxies was important, even though it was not yet known that galaxies were very distant or that they contained stars. In 1915 Slipher showed that most galaxies had redshifts, and in 1927 Georges Lemaître predicted a linear relation between distance and velocity. So when we say that Edwin Hubble discovered the expanding universe, we're simplifying a bit too much; I'm glad to see that this book gets

Heart of Darkness also discusses the evidence for dark matter as seen by

CAMBRIDGE

New and Forthcoming Titles from

Cambridge University Press

Gravity Newtonian, Post-Newtonian, Relativistic Eric Poisson and Clifford M. Will \$85.00: HB: 978-1-107-03286-6 800nn

Introduction to **Elementary Particle** Physics, 2nd edition

Alessandro Bettini \$75.00: HB: 978-1-107-05040-2 489nn

Quantum Field Theory and the Standard Model

Matthew D. Schwartz \$90.00: HB: 978-1-107-03473-0 863nn

An Introduction to Mechanics, 2nd edition

Daniel Kleppner and Robert Kolenkow \$80.00: HB: 978-0-521-19811-0 366pp

Modern Particle Physics

Mark Thomson \$75.00: HB: 978-1-107-03426-6 570pp

Extreme Physics Properties and Behavior of Matter at Extreme Conditions Jeff Colvin and Jon Larsen \$99.00: PB: 978-1-107-01967-6

Gravity Patrick Hamill

Particle Physics

QUANTUM FIELD THEORY and the STANDARD MODEL INTRODUCTION MECHANCS

Scientific Inference Learning from Data

Simon Vaughan \$80.00: HB: 978-1-107-02482-3 \$34.99: PB: 978-1-107-60759-0

Manifolds, Tensors, and Forms

Mathematicians and Physicists Paul Renteln \$70.00: HB: 978-1-107-04219-3

An Introduction for

A Student's Guide to Lagrangians and **Hamiltonians**

\$75.00: HB: 978-1-107-04288-9 \$28.99: PB: 978-1-107-61752-0

Fundamental Planetary Science Physics, Chemistry and

Habitability

Jack J. Lissauer and Imke de Pater \$125.00: HB: 978-0-521-85330-9 \$60.00: PB: 978-0-521-61855-7

Funding Your Career in Science

From Research Idea to **Personal Grant**

Ritsert C. Jansen \$75.00: HB: 978-1-107-04006-9 \$27.99: PB: 978-1-107-62417-7

Successful **Grant Proposals in** Science, Technology and Medicine A Guide to Writing the

Sandra Oster and Paul Cordo \$90.00: HB: 978-1-107-03809-7 \$45.00: PB: 978-1-107-65930-8

Prices subject to change.

www.cambridge.org/physics @cambUP_physics 800.872.7423 / +44 (0)1223 326050

340pp

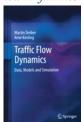
Fritz Zwicky in the 1930s, the fruitless hunt for the cosmic deceleration parameter, the history of Einstein's cosmological constant, and some of the many ways astrophysicists now measure dark matter. And the text offers some delightful salvos against those who claim that the end of science is nigh or that scientists don't change their minds until the "paradigm shifts."

The book is less enchanting in its stories of the past decade. The writing is more technical, with too many selfcitations by Ostriker. The general reader might not care who did what in modern theory, whereas the physicist will care about those details, since the participants are alive and well known today. The astonishingly precise and presumably accurate measurements and implications of the cosmic microwave background fluctuations do not get the detailed treatment needed. There are no diagrams to illustrate how telescopes work, how spectrometers work, or how cosmic microwave background radiation is measured.

As the project scientist and one of the three principal investigators for the Cosmic Background Explorer (COBE) satellite, and now senior project scientist for the James Webb Space Telescope, I am attuned to the how and why of measurements. I wish those questions had been addressed in this book, given that most of the recent progress in cosmology has come from improved technology, especially in space missions. With few exceptions, cosmological theory is driven by surprises in measurement, and most of those surprises are discovered with new equipment. For convincing proof of that, see Martin Harwit's brilliant book, Cosmic Discovery: The Search, Scope, and Heritage of Astronomy (Basic Books, 1981).

The book also gets some of the details about COBE wrong; it misstates Earth's age (it is 4.6, not 3.7, Gyr); and on page 207 it gives an incorrect calculation of escape velocity. Overall, though, Heart of Darkness is a cheerful and accessible introduction to some of the most fascinating topics in astronomy today. It presents the concepts clearly, tells the stories about the discoverers with remarkable detail, and explains the logic leading to the hypotheses of dark matter and dark energy. I would not hesitate to recommend it for both general readers and scientists.

> **John C. Mather** NASA Goddard Space Flight Center Greenbelt, Maryland


Traffic Flow Dynamics Data, Models and Simulation

Martin Treiber and Arne Kesting (translated from German by Christian Thiemann) Springer, 2013. \$89.95 (500 pp.). ISBN 978-3-642-32459-8

Many governments around the world view traffic jams as a serious problem. Vehicles in traffic jams emit higher concentrations of pollutants, and the people in those vehicles waste valuable time. For those reasons traffic-flow research should be advanced. The knowledge gained could help increase flow and reduce jams, which would lead to improved efficiencies and a cleaner environment.

But is such research physics? I think that after reading Martin Treiber and Arne Kesting's *Traffic Flow Dynamics*:

Data, Models and Simulation, you will agree that it is. Of course, traffic flow is not governed by Newton's laws. As a consequence, research in the field inevitably relies on empirical data, which is used to

construct a theory for the dynamics of vehicles—self-driven particles. Indeed, it is difficult to overemphasize the importance of empirical traffic data. After all, only with observational data can one judge whether an explanatory model is correct.

Traffic Flow Dynamics is divided into three parts. The first part is devoted to discussing highway traffic data. It contains one of the book's nice features—color figures that help readers to appreciate what traffic phenomena really look like and to understand them quantitatively.

In the second part of the book, the authors describe almost all the important achievements in the field—the history of theoretical research on traffic flow dates back to the 1930s—up to the present with simple, self-contained explanations. Also included here and throughout the book are unique endof-chapter problems and detailed solutions that elucidate traffic-flow theory. The authors offer detailed explanations of traffic-flow modeling based on observed data. For example, in one problem, they address the question, Why does the other lane look faster when you're stuck in congested flow?-a traffic-dynamics analogue to Why does the grass look greener on the other side?

In 2000 Treiber proposed the "intelligent driver model," which has become

a standard and often-used model in various traffic simulators. It is simple, yet it can produce realistic acceleration profiles and a plausible behavior of individual cars on the highway. A detailed and original explanation of his model, which cannot be found in any other book is, of course, given here.

In evaluating such models, one important feature worth testing is trafficflow stability. Traffic flow becomes unstable when the traffic density gets too high. That instability is related to the onset of a traffic jam and determines the capacity of traffic flow; its occurrence in a model can be compared with real data. Actually, several kinds of trafficflow instabilities are in play, but they are not easily distinguishable, and the distinctions among them can be confusing, especially to students. The various instabilities are treated comprehensively in Traffic Flow Dynamics, and the book's figures and calculations make them easier to understand. The authors also briefly address, in one paragraph in the instability chapter, the hot and controversial research exploring the existence of "phantom traffic jams" said to arise without an accident or other physical blockage. On this topic, I don't entirely agree with the authors, but their discussion is worth reading.

The final part of the book applies traffic-flow theory to solving traffic jams; that is, the topic shifts from why traffic jams occur to how they can be solved. This attention to the practical, too, is a unique feature. It's a pity that there's currently a big gap between traffic-flow science and traffic engineering, but this book admirably connects the physical mechanisms leading to a traffic jam with such engineered solutions as adaptive cruise control and ramp metering.

I expect that *Traffic Flow Dynamics* will bridge the different fields involved—physics, mathematics, computer science, traffic engineering, and others. I also think it will be a useful guide for students who want to make the jump into a fascinating area of research.

Katsuhiro Nishinari University of Tokyo Tokyo, Japan

Quantum Computing Since Democritus

Scott Aaronson Cambridge U. Press, 2013. \$39.99 paper (370 pp.). ISBN 978-0-521-19956-8

Scott Aaronson's Quantum Computing Since Democritus is lively, casual, and