
B
acteria are single-celled organisms that
make decisions all the time about where to
swim, what to eat, and when to divide.
They are also micron-sized containers
filled with a million proteins and a few mil-

lion base pairs of DNA, as well as RNA molecules,
lipids, sugars, inorganic salts, and water. The ques-
tion of how that bag of chemicals makes seemingly
complex decisions has been the focus of biology for
more than 50 years. Recently, experiments have
begun to yield quantitative data that have led to
models of the molecular-scale processes involved.

Physicists have taken the new developments as
an invitation to join the party and are helping figure
out how cells make decisions in many different con-
texts. They are bringing to molecular biology the in-
terplay of quantitative models and experiments that
has been so critical to the success of physics over the
centuries. That interplay is pushing the field in un-
expected new directions, and hopes are high that
the general principles behind cellular decision mak-
ing will soon reveal themselves. 

To eat or not to eat sugar
In the 1940s Escherichia coli became established as
the “hydrogen atom” of bacterial decision making
during experiments performed at the Pasteur Insti-
tute in Paris.1 At the time, Jacques Monod was work-
ing with the bacterium and measuring the growth
of a cell culture in the presence of sugar. Typically,
the population of bacteria would eat the sugar and

double in size every hour or so. But when he meas-
ured the growth of E. coli in the presence of two dif-
ferent types of sugar, a peculiar thing happened.
After a few hours, the exponential growth would
pause for about an hour before resuming at a similar
pace, a pattern that Monod published in his doctoral
thesis and that is shown here in figure 1a. His key
observation was to notice that the timing of the
pauses was controlled by the ratio of the amounts
of the two sugars available to the bacteria. For ex-
ample, when the primary or preferred sugar, glu-
cose, was present in smaller proportion than a sec-
ondary sugar, lactose, the pause would occur earlier. 

Monod realized that the bacteria were initially
unable to digest lactose, which explained the pause
in the colony’s growth when all the glucose was
eaten. The pause was eventually identified as the
time the bacteria required to manufacture the en-
zyme proteins needed to digest the lactose. The
genes for those enzymes are encoded in the E. coli
DNA, but they are initially inactive. The finding led
to Monod’s realization that some genes might be
turned off in cells and await some chemical cue to
switch them on.

In modern times such switching can be ob-
served directly at the level of a single cell.2 The series
of snapshots shown in figure 1b, for instance, cap-
tures an E. coli cell in the act of producing one of the
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proteins associated with lactose digestion. The key
question I’ll address in this article is, What is the mo-
lecular basis by which a cell decides to switch a gene
on? Although all the cells in figure 1b are genetically
identical and experience the same environment,
only one appears to be making the protein. As we’ll
see, that cellular individuality is a direct conse-
quence of molecular noise that accompanies cellular
decision making. The sources of the noise and its bi-
ological consequences are currently a hot topic of re-
search. And statistical physics is proving to be an in-
dispensable tool for producing mathematical
models capable of explaining data from experiments
that look at decisions made by individual cells.

The revolutionary idea that emerged from
Monod’s experiments is that although cells possess
the genetic blueprints for making any number of
proteins, they produce only a subset that depends
on the conditions in the environment. In other
words, gene expression, the process by which genes
are read and their contents used to make proteins,
is regulated. It is as if every gene has attached to it
a spigot that the cell can adjust to control the

amount of proteins it produces. Beyond bacterial
decision making, the insight that cells turn genes on
and off forms the molecular basis for the develop-
ment of multicellular organisms. In that process, a
single fertilized egg cell divides many times to give
a collection of cells that are genetically identical yet
have widely different properties; compare, for in-
stance, blood cells and nerve cells. At the heart of
the processes that generate such diversity is the on–
off switching of genes. 

Ultimately, the genes and the proteins that turn
them on and off are simply molecules diffusing
within the cell’s interior. How the random thermal
motion of those molecules and the interactions be-
tween them lead a bacterial cell to make a decision
is an intriguing problem that has been addressed by
a combination of careful quantitative experimenta-
tion and theory. But although the contours of a the-
ory of gene expression are beginning to emerge for
specific bacterial genes, the general principles behind
the regulation of gene expression remain elusive. 

Gene expression as computer
An operon is a stretch of DNA that contains one or
more genes under the control of the same regulatory
region of “promoter” DNA. A typical protein con-
tains about 300–400 amino acids; since each amino
acid is encoded by three bases, a typical gene is
about 1000 bases long. The operon model proposed
by Monod and his colleague François Jacob in 1961
posited that when lactose is absent the E. coli cell
turns off the so-called lac genes that encode the en-
zymes necessary for lactose digestion. Only in the
presence of lactose and the absence of glucose
would that negative control be relieved. The model
was initially silent about the identity of the molecu-
lar players involved in that negative control, but
with the rise of molecular biology in the intervening
decades, all the actors were eventually identified. 

The key molecular players in the regulation of
the lac genes are RNA polymerase, the Lac repres-
sor, and CRP (cyclic-AMP receptor protein, where
AMP is adenosine monophosphate), which together
implement the computation described in figure 2a:
Gene expression is turned on in the presence of lac-
tose and the absence of glucose, and it’s turned off
for other combinations of the two inputs. RNA poly-
merase is the protein machine that binds to the pro-
moter DNA adjacent to a particular gene and then
transcribes the gene by moving along the DNA 
and assembling an RNA molecule whose sequence
is complementary to that of the gene. The RNA 
molecule is then read by the ribosome, another mo-
lecular machine whose job is to assemble proteins
from amino-acid building blocks following the ge-
netic code. 

The binding of the RNA polymerase to the pro-
moter DNA associated with the lac genes is nor-
mally very weak, so the genes are not transcribed;
gene expression is thus in the off state. The role of
the CRP molecule is to increase the probability that
the polymerase will bind to the DNA and thus turn
the lac genes on. It does so by a favorable interac-
tion—one that lowers the total free energy of the
system—between it and the RNA polymerase. The
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Figure 1. Bacterial decision making in action. (a) The growth of an
Escherichia coli bacterial culture as a function of time occurs in two
phases, separated by a pause. The amount of growth in each phase is
proportional to the amount of glucose and lactose in the cells’ environ-
ment. The two sugars were mixed in 1:3, 1:1, and 3:1 proportions in the
three plots shown left to right; the densities of the cell cultures increased
in the same proportions in the two phases. (Adapted from ref. 1.) (b) In
the presence of a lactose surrogate, individual cells can switch from a
state in which they are unable to digest lactose to a state in which they
are able to consume the secondary sugar. Yellow indicates the amount
of a fluorescently labeled protein, lactose permease, which is one of the
enzymes needed by the cell to digest lactose. (Adapted from ref. 2.) 



Lac repressor has the opposite effect. When it is
bound to the DNA, it prevents the RNA polymerase
from binding to the promoter DNA and therefore
shuts the lac genes off. 

The Lac repressor and CRP are “transcription
factor” proteins whose role is to implement the logic
function described in figure 2a. In the presence of
glucose, CRP, like RNA polymerase, binds weakly
to promoter DNA and the lac genes are off. In the
absence of glucose, the cell makes cyclic-AMP mol-
ecules, which bind to CRP and alter its shape in such
a way that it strongly binds to the promoter DNA
and increases the likelihood that RNA polymerase
becomes bound at the same time. In that sense, CRP
is a glucose detector, although its function is much
broader (see PHYSICS TODAY, October 2013, page 10).3

When lactose is not present, the lac genes are
off regardless of whether glucose is present, because
then the Lac repressor is bound to promoter DNA
and takes up the space that the RNA polymerase
would normally occupy before it begins transcrip-
tion of the lac genes. In the presence of lactose, the
Lac repressor binds to allolactose, one of the prod-
ucts of lactose digestion, and as a result the Lac re-
pressor’s shape is changed such that it no longer
binds strongly to promoter DNA. Therefore, the ab-
sence of glucose and the presence of lactose is the
only situation in which CRP is bound to promoter
DNA and the Lac repressor is not, which leads to a
high likelihood for polymerase to bind and turn on
the lac genes. 

The description of the lac operon as a digital
computer that converts its four possible input states
into a digital output—with lac genes on or off—is
simple and powerful in its ability to make qualita-
tive predictions about the system. But it is also in-
complete. In particular, the computer model is inca-
pable of predicting how the amount of gene
expression, which is quantified by the number of

lactose-digesting enzymes produced by E. coli per
unit time, depends on the amount of glucose and
lactose in the environment. Experiments that pre-
cisely measure the input–output relation have led to
models of the lac operon based on statistical me-
chanics as opposed to Boolean logic. 

Figure 2b shows the results of such a quantita-
tive experiment by Terence Hwa and colleagues.4 In
2007 they measured the amount of lac-gene expres-
sion as a function of cyclic AMP concentration,
which, as described above, is an indicator of the
amount of glucose in the environment, and of IPTG
concentration (IPTG is a sugar that, like allolactose,
binds to Lac repressors and weakens their binding
to promoter DNA). While the data are qualitatively
consistent with the Boolean description of the lac
operon—the amount of gene expression is signifi-
cant only when the concentrations of both cyclic
AMP and IPTG are high—they also clearly show the
analog nature of the computation done by the E. coli
cell. The challenge to models of gene regulation is
to compute the input–output function in figure 2b. 

Statistical mechanics of repression
The lac operon is simple compared with the gene
regulation that occurs in our cells, but it is still quite
complicated in terms of the number of different mo-
lecular players involved. An experimental approach
developed by molecular biologist Benno Müller-
Hill and colleagues in the mid 1990s reduced that
complexity by genetically manipulating the lac
operon to take CRP out of the picture.5 In such ex-
periments, researchers measured the amount of ex-
pression of the lac genes solely as a function of the
number of Lac repressors in the cell. 

The experiments used a synthetic lac operon in
which the lac genes are on in the absence of Lac re-
pressor binding to the promoter DNA sequence and
are off when the Lac repressor sits on the promoter,
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Figure 2. Gene expression as computation.

(a) The decision whether to digest lactose is
made by the Escherichia coli cell based on 
two molecular inputs: the sugars lactose and 
glucose, which are either present (+) or absent
(−) in the environment. The multicolored strip

represents a stretch of “promoter” DNA; the different colors correspond to DNA sequences that bind different proteins.
The sugars control the binding of key proteins—Lac repressor, cyclic-AMP receptor protein (CRP), and RNA polymerase—
which determine whether the lac genes are either expressed, in which case the digestion enzymes are produced, or not.
(Adapted from ref. 12.) (b) Gene expression is not actually binary but a continuous function of the inputs. This plot shows
the measured amount of gene expression as a function of the concentration of cyclic AMP (adenosine monophosphate),
which is produced by E. coli when glucose is low, and the concentration of IPTG, a common experimental surrogate for
lactose. (Adapted from ref. 4.)



as illustrated by the two-state system in figure 3. In-
creasing the number of Lac repressors in the cell 
reduced the expression of the lac genes. So did
changing the promoter DNA sequence so that it
binds the Lac repressor molecules more strongly.
The effect of the repressor on gene expression was
quantified by computing the ratio of the amount of
gene expression in cells with no repressor and the
amount measured in cells with repressors. That
ratio ranged continuously between 1.3 and 4700,
from weak to strong repression, as the number of
Lac repressors and the promoter DNA sequence
were changed. Clearly, a Boolean description of the
gene regulatory process does not explain the out-
come of those experiments. What is needed instead
is a mathematical function that relates the number
of Lac repressors in the cell and their binding affin-
ity with promoter DNA to the amount of repression. 

Because transcription, the first step in gene ex-
pression, only occurs when the promoter is in the
on state—that is, available for RNA polymerase to
bind—the amount of gene expression is propor-
tional to the fraction of the time the gene is on. 
Fortunately, one can turn to statistical mechanics 
to compute the probability of that state because 
the binding of the Lac repressor with promoter
DNA can effectively be treated as a reaction in 
equilibrium.

Calculating the probability pOn(R) of the lac
genes being in the on state, where R is the number
of repressors in the cell, is a simple exercise in the
statistical mechanics of a two-level system. The two
states correspond to gene expression being on or off,
and the ratio of their probabilities is given by the
Boltzmann formula,

                        
(1)

where the exponent contains the free-energy differ-
ence between the two states of the promoter DNA.
To simplify the calculation of the free energies, let’s

assume that the repressor is always bound some-
where on the DNA; although that’s not crucial to the
argument, it happens to be true in the case of the Lac
repressor in E. coli. When the repressor is attached
to the promoter DNA, it has a binding energy ϵS ,
while the repressor’s binding energy somewhere
else (at a nonspecific site) on the DNA is ϵNS; the en-
ergies satisfy ϵS < ϵNS < 0 and the specific binding is
stronger by virtue of a larger Boltzmann factor. The
two promoter states also have different multiplici-
ties—the number of different arrangements of the R
repressors along the DNA—and therefore different
entropies. When the promoter is in the on state, all
R repressors are bound non specifically to the 
DNA and can be on any one of NNS ≈ 5 × 106 sites 
corresponding to the number of base pairs that
make up the E. coli genome; the number of such 
arrangements is given by the binomial coefficient
NNS!/R!(NNS − R)!. Therefore, the free energy of the
on state is

             
(2)

Similar reasoning leads to 

 
(3)

for the free energy of the off state. The only differ-
ence is that one repressor is bound to promoter
DNA, thereby switching the promoter off, while
R − 1 repressors are bound nonspecifically. The dif-
ference lowers the energy by ϵS − ϵNS and lowers the
entropy as well. 

With the free energies for the on and off states in
hand, one can compute the ratio of their probabilities:

                         
(4)

where Δϵ ≡ ϵS − ϵNS and NNS ≫ R. The typical num-
ber of Lac repressors in an E. coli cell is R = 10, and
the difference in energy between specific and non -
specific binding is about −15kBT, which gives a ratio
pOn/pOff ≈ 0.15. To obtain a formula that can be di-
rectly compared with experimental data, one can
use equation 4 to compute the amount of repression
Rep(R), which is defined as the ratio of the amount
of gene expression in the absence of Lac repressors
in the cell to the amount of gene expression in the
presence of R repressors: 

         
(5)

As first described by Jose Vilar and Stanislas
Leibler,6 that simple theoretical prediction accounts
for the experiments by Müller-Hill’s group in quan-
titative detail. More recent experiments by Hernan
Garcia and Rob Phillips7 have led to a precision test
of the formula. Using the tools of genetic manipula-
tion, they constructed a number of different E. coli
strains, each differing in the number of Lac repres-
sors produced by the cell. For each mutant strain,
they measured the amount of lac gene expression
and compared it with a strain with no Lac repres-
sors. Equation 5 was then used to extract the binding
energy Δϵ, which, if the statistical mechanics model
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Figure 3. The repression of gene expression, modeled as a two-level
system. Transcription, the first step in gene expression, begins with the
enzyme RNA polymerase binding to the promoter DNA associated with
a particular gene. Once bound, the RNA polymerase can begin reading
the gene. The binding of the RNA polymerase to the promoter DNA,
however, can be obstructed when a repressor protein is bound to part
of the promoter. In that case, the promoter is unavailable to the RNA
polymerase, transcription never commences, and gene expression is
off. Only when the repressor unbinds from the DNA can the polymerase
bind and turn gene expression back on. (Adapted from ref. 12.)



is correct, should not depend on the strain used. To
the extent that all the data points plotted in figure 4
lie on horizontal lines, the model is consistent with
the data. Some discrepancies between theory and
experiment appear in the plots, but none so egre-
gious as to cast doubt on the model. 

Does E. coli have free will?
In a bacterial colony whose gene expression is de-
scribed probabilistically, one might expect to ob-
serve the stochastic switching between on and off
states in real time. In 2005 Ido Golding and col-
leagues did just that8 using fluorescently labeled
RNA molecules that were produced from a syn-
thetic gene they inserted into the E. coli DNA. By
monitoring the rise and fall in fluorescence intensity
from a single cell, the researchers were able to infer
changes in the number of RNA molecules as a func-
tion of time over many hours, as shown in figure 5.
They noticed that periods of RNA production were
interspersed with long periods of no RNA produc-
tion—an observation consistent with the simple pic-
ture of repression outlined in this article.

But simple repression is almost certainly not
the cause of the observed switching, as the environ-
ment in which the cells were placed had more than
enough sugar to ensure that the repressor proteins
would be unable to bind to promoter DNA. Indeed,
the molecular origins of the observed switching re-
main unknown. Still, even in the absence of a mo-
lecular-scale mechanism, it is interesting to take the
switching as a fact of E. coli life and try to under-
stand its consequences on the dynamics of gene 
expression.

We can start with a model of the E. coli cell as a
simple chemical reactor. A gene in that reactor is
transcribed, and corresponding RNA produced, at
rate r. That RNA then degrades at a rate γ. (In E. coli,
typical values are r = 0.04 min−1 and γ = 0.2 min−1.)9

To describe the dynamics of RNA production and
degradation, consider the probability distribution
p(n,t) that the cell at time t has n RNA molecules of
the gene in question. In a small time interval Δt, cells
can either produce an additional RNA with proba-
bility rΔt or have one of its n RNAs degraded with
probability nγΔt; the factor of n accounts for the fact
that each molecule decays independently of the oth-
ers with the same rate. Both processes reduce the

probability that the cell has n RNAs, while RNA
production in a cell with one less RNA or degrada-
tion in a cell with one extra RNA will increase p(n,t).
That time evolution of the probability reaches a
steady state p*(n) when there is balance between RNA
production and degradation: rp*(n − 1) = nγ p*(n).
Solving the recursive relation yields the steady-state
distribution of RNA molecules, 

                          (6)

which is a Poisson distribution with a mean number
〈n〉 = r/γ, around 0.2 for a typical E. coli gene, or
about one RNA molecule every five cells.9

The model of transcription as a simple chemical
reactor that produces messenger RNA corresponds
to the situation when the gene is always on. If the
promoter, as in the case of the lac operon, can sto-
chastically switch between a transcriptionally active
on state and an inactive off state, the steady-state
distribution of mRNA would no longer be Poisson-
ian. It would instead be characterized by a larger
variance for the same mean number of RNA mole-
cules. In other words, stochastic switching between
different promoter states increases the noise in the
transcriptional output of the cell. 

Recent research by Harvard University’s Sun-
ney Xie and colleagues measured the cell-to-cell
variability in the number of RNA molecules for a va-
riety of different genes in E. coli and found that for
all the genes examined, the noise levels were ele-
vated and quantitatively consistent with their pro-
moters switching between on and off states.9 Al-
though that’s an intriguing result, we’re still far from
understanding the underlying molecular processes
that turn all those genes on and off.

What is needed are the same kinds of theoreti-
cally driven experiments that were done to measure
the mean amount of gene expression over a cell pop-
ulation. The lac operon is poised for an important
role in that effort. For example, the model of repres-
sion described in figure 3 makes specific predictions
about how the noise will change if the number of re-
pressors or the promoter DNA sequence is tuned.10

The hope is that careful measurements of the noise
and comparisons to theory will further elucidate the
molecular mechanisms responsible for the regula-
tion of gene expression in cells. 

The stochastic nature of gene expression in cells

( ) = ,p n e* − /r γ( /r γ)n
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Figure 4. The repression model, tested. Six mutant strains of Escherichia
coli were constructed so that the cells of each strain contain a different
number R of Lac repressor proteins: R ≃ 10, 30, 60, 130, 610, and 870 for
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(Adapted from ref. 7, with data on the Oehler strain from ref. 5.)



is interesting not only as a diagnostic for discriminat-
ing between different models of regulation of gene
expression but also for how it affects the physiology
of those cells. The example shown in figure 1b, in
which some cells become lactose eaters and others
don’t in the same environment, is a case in point.
The result is a population of cells that, although 
genetically identical, may behave quite differently.
It is as though each E. coli cell is free to choose be-
tween two diets, glucose or lactose, unencumbered
by its genes or the environment. 

Experiments in 2008 by Xie and colleagues re-
veal the molecular nature of that “free will” and
trace it to the stochastic expression of E. coli genes.2

One of the expressed lac genes codes for a protein,
lactose permease, that transports lactose molecules
into the cell. That protein therefore provides posi-
tive feedback in the expression of lac genes: The
more lactose permease produced, the more lactose
makes it into the cell, and the more likely it is that
the lac promoter will be in the on state, which, in
turn, leads to more expression of lac genes and more
lactose permease molecules. 

Thanks to that positive feedback, E. coli cells
exist in two different steady states—one in which
there are many permeases in the cell (the yellow cell
in figure 1b), the other in which the number of per-
meases is low (the dark cells in 1b). Stochastic fluctu-
ations in the expression of the lac genes—fluctuations,

for instance, between an on and an off state of the
promoter—can flip the switch and turn a lactose
noneater to a lactose eater. That explains the movie
stills in figure 1b, in which cells end up in two dif-
ferent states. Detailed measurements of the cell-to-
cell fluctuations in the amount of lactose permease
confirm the model’s validity. 

As a very different application of that kind of
bacterial free will, Leibler and his colleagues
demonstrated nearly a decade ago that E. coli cells
can spontaneously switch to phenotypes that are re-
sistant to antibiotics.11 What distinguishes that type
of antibiotic resistance from the more familiar kind
often reported in the news is that the bacteria in this
case are not genetic mutants. When the bacterial
colony is treated with antibiotics, only the few cells
that have switched to the antibiotic-resistant state
survive. After the antibiotics have flushed through
the system, some of the survivors switch back to the
antibiotic-sensitive state, and a new colony eventu-
ally arises that is identical to the one present before
antibiotics were introduced, with the majority of
cells sensitive to antibiotics.

Using that type of bet-hedging strategy, bacte-
ria are able to balance the penalty in reproductive
speed that the antibiotic-resistant cells pay with the
benefit they provide to the colony by being able to
survive antibiotic treatment. How pervasive such
strategies are in the living world and what role sto-
chastic gene expression plays in allowing cells to
gamble in that way are interesting questions. No
doubt a mix of theory and experimentation will con-
tinue to yield surprises. 

Gene expression by the numbers
Physics-based models are leading to more stringent
tests of the molecular mechanisms responsible for
gene expression than those provided by the quali-
tative models presented in biology textbooks. They
also pave the way for the design of so-called syn-
thetic genetic circuits, in which the proteins pro-
duced by the expression of one gene affect the ex-
pression of another. Such circuits hold the promise
of bacterial cells capable of producing useful chem-
icals or combating diseased human cells, including
cancerous cells. Whether this foray of physics into
biology will lead to fundamentally new biological
insights about gene expression remains to be seen. 
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Figure 5. (a) Movie stills of Escherichia coli cells with fluorescently 
labeled RNA molecules capture the dynamics of transcription. Each
green spot represents messenger RNA molecules whose number can be
inferred from the fluorescence intensity. (b) That intensity is measured
in a single cell as a function of time. The plot shows periods of RNA 
production interspersed among periods when the cell is transcription-
ally inactive. Plateaus in the time-averaged (red) trace indicate those 
inactive periods, and the gray vertical lines mark times at which the cell
divides, leading to a random partitioning of RNA molecules between
the two daughter cells; the trace follows the number of RNAs in just
one of the two daughters. (Adapted from ref. 8.)


