
U
nder the soft hum of sodium street lamps, a shad-
owy figure prowls the nighttime street. As he ap-
proaches a car parked between the cones of light
cast down by the lamps above, he pauses, then
reaches into his jacket. The near silence of the night

is split by the unmistakable crackling of breaking glass; the
car’s side window lies shattered on the sidewalk. The figure,
working quickly, reaches inside the vehicle and grabs the
backpack that the car’s owner left under the passenger’s seat.
It looks to be another easy score. But suddenly, the thief’s
world is bathed in pulsing blue light, and his ears ache with
the piercing wail of a police siren. “Freeze,” commands the
police officer, who has been lying in wait for just such an oc-
casion and was guided to this location by his new partner, a
computer program.

Could crimes really be predicted by a computer? My col-
leagues and I think so, and we have spent the past several
years developing mathematical theories that not only aim to
explain patterns in crime but also help to predict where and
when crimes would be likely to occur in the near future.

Little boxes
Unless you are one of the few who own items of exquisite
value—unique works of art, rare jewelry, and such—your
home is unlikely to be cased by a burglar. Rather, if you are
burgled, your home was probably just in the wrong place at
the wrong time. That is to say, your home was somewhere
along your burglar’s daily route, and the burglary was a crime
of opportunity.

Unfortunately for those of you who have had your homes
burgled, criminals tend to return to homes they have hit pre-
viously (repeat victimization) or to neighboring homes (near-
repeat victimization). After all, having stolen from you once,
the burglar has much more information about your home
than almost any other; he knows what types of goods are
present, what forms of security protect it, and when the oc-
cupants are not home. So returning to your home minimizes
uncertainty and the risk of being caught. And since nearby
homes and their occupants are often similar in many regards,
your burglar may feel more comfortable burgling one of your
neighbor’s homes, which are also along his daily route, than

he would hitting a home on the opposite side of the city. Fur-
thermore, even if your burglar himself does not return, the
original incident may have left a physical mark on your
house, such as a broken window, that perhaps subcon-
sciously indicates to other potential criminals that your home
is not well guarded and might be an easy target.

The tendency of criminals to revisit the same locations
repeatedly leads to areas of elevated crime risk. Mapping
those hot spots as they arise is one technique that police agen-
cies have used to fight crime. It is not clear, however, how to
best construct such hot-spot maps. Moreover, the police
would really like to make a prospective map of tomorrow’s
hot spots before the crimes have been committed. To address
those issues, my colleagues and I turned to mathematics. Our
goal was to construct a relatively simple model that describes
the formation and dynamics of certain classes of crime hot
spots, given the criminal psychology discussed above.

Criminal attraction
We realized our model for crime hot spots first as an agent-
based simulation—a computer program that simulates many
essentially identical criminal agents as they go about their
daily routines within a virtual city and occasionally commit
crimes. At each location within the city, agents are randomly
generated at a specified rate Γ. Once they are virtually born,
they move throughout the city looking for crime opportuni-
ties. The decision of a criminal agent to commit a crime at a
given location i in the city is made probabilistically, with the
instantaneous rate of crimes at the location called the attrac-
tiveness, Ai. 

If the criminal does not commit a crime at his current lo-
cation, then he will move to an adjacent location in the city
by executing a biased random walk. That is, he chooses to
move to a neighboring location j with a probability that is 
directly proportional to Aj. As a result, the criminal tends to
move to areas of the city that he finds more attractive for
crimes. We reasoned that on any given outing, a criminal
would only commit one crime. So whenever a criminal does
commit a crime, the algorithm removes him from the city—
think of that removal as representing the criminal heading
home with his loot, to return again to active status at some
random time determined by the birth rate Γ. As described so
far, the simulation captures the opportunistic nature of most
crimes in a simple manner.

To model repeat victimization requires a bit more work.
We supposed that the attractiveness of a location i is a linear
combination of two factors: an intrinsic attractiveness, A0,
constant in space and time, and a dynamic attractiveness, 
Bi , which varies in time as crimes are (or aren’t) committed
nearby. (In the real world, the intrinsic attractiveness proba-
bly depends on position. But let’s keep it simple.) Specifically,
whenever a crime occurs at location i, Bi increases by some
specified amount ϴ. As a result, crimes are more likely to
take place there in the future. To allow for near-repeat vic-
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timization, at each round of the simulation we take a fraction
η of the dynamic attractiveness at i and spread it among its
neighbors. Thus locations near crime sites become more
likely spots for crimes as well. But to limit those effects to
only the near future, we also force Bi to decay exponentially
over time, with a decay rate ω.

The agent-based model just described contains several
parameters that affect the behavior of a simulation; some 
parameter values lead to crime hot spots, and others don’t.
Unfortunately, it is difficult to predict how the values of any
of the model’s individual parameters will change the results
of the simulation, so we faced the discomforting proposition
of having to run the simulation thousands of times with
 varying parameters to determine how each one affects the
outcome. But at least for big cities with many criminals, 
there is another way. We can appeal to the law of large num-
bers and use expectation values of probabilistic events. The
result of that appeal is a much simplified form of the model,
which may be written as two coupled partial differential
equations:

Here A describes local attractiveness and ρ describes a density
of criminals. The remaining three parameters are dimension-
less. The spreading parameter η has the same interpretation
as in the agent-based simulation; A0 is a scaled version of the
intrinsic attractiveness from the agent-based model; and A‾,
the spatial average of A in the steady state, is built from the
other parameters of the simulation.

With the above system of equations in hand, we could
answer a variety of previously daunting questions about

crime hot spots. One particularly interesting finding is gov-
erned by the inequality

Though far from obvious, satisfying the inequality basically
means that crimes are close enough that their near-repeat 
regions may overlap and begin to form hot spots, but not so
close that the hot spots glom into one giant crime nightmare.
We give the name supercritical to those hot spots formed
when the inequality is satisfied to distinguish them from
other types—subcritical hot spots—that can develop if the 
inequality is not satisfied, provided there is a very large con-
centration of crime in an area to begin with. The two types
respond very differently to police intervention, which we
model by temporarily setting the local attractiveness within
existing hot spots equal to zero: Supercritical hot spots
merely shift to locations that the police are not suppressing,
but subcritical ones can be eradicated if the police presence
is sufficient.

Our theory has shed light on the conditions under which
crime hot spots form and on their dynamics and responses
to police intervention. Inspired by what we have learned, we
have developed further techniques tailored to the task of
computing prospective maps based on past criminal activity.
The tools we have developed are now in use by several police
departments internationally, and the once fantastical idea of
computer programs predicting crime in advance is slowly 
becoming reality. 
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Crime hot spots. (a) This snapshot from a simulation shows
crime hot spots in a region of California’s San Fernando Valley,
as computed with the agent-based model discussed in the
text. A video of the simulation may be viewed at the online
version of this Quick Study. In this and the following panel,
red denotes areas attractive to criminals; blue, areas of low 
attraction. (b) Hot spots in the agent-based simulation (right)
display random fluctuations not seen in the partial-differential-
equations model discussed in the text (left).
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