
In his classic 1971 text, Peter Bradshaw refers to
turbulence as “the most common, the most im-
portant and the most complicated kind of fluid
motion.”1 Now, more than 40 years later, the
claim remains easily justifiable. Turbulence is

likely familiar to anyone who has flown on an air-
plane or watched water rush past a rock in a stream.
It emerges in any number of natural and manmade
settings, from atmospheric and oceanic currents to
flows in pipelines and heat exchangers. It influences
weather, pollution levels, and climate change and
figures into the design of propulsion devices, wind
turbines, clean rooms, artificial hearts, and irriga-
tion systems. 

The complexity of turbulence is evidenced by
the fact that after more than a century of concerted
research effort, many of its seemingly simple ques-
tions remain unanswered. It has been said, in fact—
in a quote variously ascribed to Arnold Sommerfeld,
Albert Einstein, and Richard Feynman—that “tur-
bulence is the last great unsolved problem of classi-

cal physics.” Part of the complexity stems from the
fact that turbulent flows are composed of recurrent,
sometimes coherent flow structures, or eddying
motions, that exhibit a range of length scales span-
ning several orders of magnitude, all interacting
with one another.

The problem becomes still more complex when
the flow is confined by one or more solid surfaces.
The presence of a wall introduces new length scales
and fundamentally changes the nature of turbu-
lence. Although the biggest changes are limited to
the thin layer near the surface, that layer is of out-
sized practical importance. For example, the behav-
ior of that near-wall region largely determines the
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New experimental insights could pave the way for leaner, faster simulations
of turbulent fluid flow.
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drag force on a plane or ship, the distribution of heat
in the atmosphere, and the energy required to de-
liver oil and other goods through pipelines. Con-
sider that according to the US Department of Trans-
portation, in 2009 the 409 000 miles of pipelines in
the US carried 21% of all ton-miles of freight. For
perspective, the US Energy Information Adminis-
tration estimates that the environmental impact of
reducing transportation energy by 5% would be
equivalent to that of doubling the US wind energy
production.

Our understanding of wall-bounded turbulent
flows has developed rather slowly. But recent ad-
vances in computational and experimental capabil-
ities have delivered new insights that may finally
break the logjam. Experiments at a handful of new
facilities across the globe have revealed new scaling
and universalities in wall-bounded flows, which in
turn hold promise to vastly increase the kinds of
problems we can solve computationally—and the
efficiency with which we can solve them.

Viscosity and inertia
In the simplest case, a turbulent flow is character-
ized by a competition between viscous forces, which

damp out velocity fluctuations by dissipating ki-
netic energy into heat, and inertia forces, which tend
to generate and preserve velocity fluctuations. The
ratio of inertia to viscous forces is known as the
Reynolds number, Re = UL/ν, where U and L are
characteristic velocity and length scales and ν is the
kinematic viscosity of the fluid.

If Re is less than 10 or so, inertia forces are neg-
ligible and the flow is laminar and more or less per-
fectly damped. The velocity field adjusts almost in-
stantly to any changes in the pressure gradients that
drive the flow. Such is the flow regime experienced
by swimming bacteria and dust particles in air.

In the intermediate range 10 < Re < 103, inertia
forces become increasingly important, though not
strong enough to give rise to persistent velocity fluc-
tuations. Included in that category of laminar flow
are capillary and pulmonary flows in the human
body and gliders in air or in water.

At Re > 103, however, viscous effects may not be
strong enough to damp out velocity disturbances in-

troduced into the flow field. As a result, a tiny fluc-
tuation—due to, say, a small roughness element or
surface vibration—may grow to the point that it
causes the entire flow to destabilize. 

Figure 1 shows one common form of distur-
bance growth, a spreading patch of turbulence called
a turbulent spot, in air flowing over a flat plate. Small
velocity fluctuations in the flow far from the plate
generate a turbulent spot near the plate’s surface.
The spot grows with downstream distance until it
encompasses the entire flow domain. In such a flow,
bound on one side by a surface, turbulence is con-
fined to a finitely thick region above the surface
known as a boundary layer.

The turbulent flow field is marked throughout
by irregular velocity and pressure fluctuations. The
magnitude of the velocity fluctuations may be as
large as 10–50% of the time-averaged velocity. The
fluctuating velocity field can be viewed as a collec-
tion of eddies of varying length scales.2 As we’ll see,
the nature of the eddies is important in determining
the statistical properties of the flow. 

Eddies, great and small
Consider the canonical example of a flow through
a pipe. If we are far downstream from the entrance
to the pipe, and if the inlet conditions are steady,
then the flow statistics become independent of
downstream distance, and the flow is said to be
fully developed. Molecular-scale forces at the
fluid–wall interface ensure that the velocity of the
fluid at the wall is equal to the velocity of the wall
itself; the wall is said to impose a no-slip boundary
condition. If y is the distance from the wall and the
pipe is our reference frame, then both u, the instan-
taneous streamwise velocity, and u‾, the time aver-
age of that velocity, are zero when y = 0.

What does the velocity profile look like away
from the wall? If the flow is laminar, u‾ varies smoothly,
as a parabola, with y. As shown in figure 2a, u‾ is great-
est at the pipe’s centerline. In a turbulent flow, how-
ever, eddies very effectively mix momentum—as well
as heat and mass—and significantly increase energy
dissipation. That tends to reduce the velocity gradients
in the bulk and, because the no-slip boundary condi-
tion must still be obeyed, increase the gradients near
the wall. 

The result is a profile like the one shown in fig-
ure 2b, in which the velocity gradients near the wall
are much larger than they would be in a laminar
flow. Viscous forces, which are proportional to ve-
locity gradients, are also especially large in the near-
wall region of a turbulent flow. They exert upon the
wall what’s known as skin-friction drag, a key com-
ponent of the resistance felt by an object—be it a
ship, fish, or plane—as it moves through a fluid.
Skin-friction drag also influences the energy re-
quired to pump fluid through a pipe. In general, the
more turbulent a flow is, the more energy will be
lost due to the effects of the skin-friction drag.

The wall also affects the distribution of a turbu-
lent flow’s energy. In the classical picture of turbu-
lent flow, kinetic energy is introduced into the sys-
tem in the form of large eddies. For pipe flows, the
largest eddies scale with pipe radius R and can ex-
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Turbulent spotLaminar flow

Figure 1. A turbulent spot develops in an initially laminar air flow
across a flat plate—a geometry known as a boundary-layer flow. The
view is from above, and the flow, from left to right, is visualized using
streaks of smoke. Downstream, the spot grows to encompass the full
domain of flow. (Adapted from ref. 15.)



tend to lengths in excess of 10R. In a channel, the
largest eddies scale with the channel width; in a
boundary-layer flow, they scale as the thickness of
the turbulent layer.

In what’s known as an energy cascade, energy
is transferred from large eddies to progressively
smaller ones—usually by a mechanism called vor-
tex stretching. Such cascades are thought to occur
without significant energy loss—dissipative viscous
forces are negligible at large scales—and the process
is sometimes referred to as inertial transfer. 

Eventually, the eddies become small enough to
be destroyed by viscous dissipation. That length
scale sets the minimum eddy size and is known as
the Kolmogorov length scale η. Interestingly, the
length scales associated with the largest and small-
est eddies give rise to an alternative definition of the
Reynolds number, Reη = (R/η)4/3. 

For wall-bounded flows, we prefer to define the
Reynolds number in terms of τw, the frictional shear
stress the fluid exerts on the wall, both because τw
is experimentally measurable and because it is an
important parameter for many applications. At the
centerline of a pipe flow, the Kolmogorov length
scale η can be estimated as (Rν3/uτ

3)1/4, where
uτ = (τw/ρ)1/2 is the so-called friction velocity and ρ is
the density of the fluid. Hence the Reynolds number
becomes Reτ = uτR/ν.

The energy-cascade description assumes that
the most energetic eddies are much larger than the
least energetic ones—that is, that Reη and Reτ are
large. Although that assumption fairly describes the
bulk portion of most wall-bounded flows, it breaks
down in the near-wall region. There, even the most
energetic eddies are relatively small, on the order of
η. In fact, because the turbulent energy in a wall-
bounded flow is typically supplied by the wall,
there can exist a reverse energy cascade, from small
to large scales.

The laws of the wall
Directly solving or computing the flow field of tur-
bulent flows is a difficult endeavor. However, scal-
ing arguments can yield valuable insights into the
behavior of canonical flows—or at least certain re-
gions of those flows—and allow one to identify im-
portant flow characteristics using a relatively small
number of nondimensional parameters. Through-
out much of the 20th century, the focus of scaling ar-
guments was on understanding the behavior of ve-
locity and turbulent momentum transport in the
near-wall region.

Turbulent momentum transport can be ex-
pressed in terms of Reynolds stresses, mathematical
products of velocity fluctuations. In the pipe flow,
for example, the quantity ρu′u′―, where u′ = u − u‾, 
corresponds to a streamwise Reynolds stress.
(Other important Reynolds stresses in a pipe flow
are ρv′v′―, ρw′w′―, and ρu′v′―, where v′ and w′ are ve-
locity fluctuations in the wall-normal and cross-
stream directions.)

Near the wall, Reynolds stresses must go to
zero and thus momentum transport is dominated
by viscous forces. In that so-called inner region, the
relevant velocity and length scales are uτ and ν/uτ;

the nondimensional wall distance is y+ = yuτ/ν; 
and the nondimensional streamwise velocity is 
u+ = u‾/uτ. In the outer region of the flow, we expect
momentum transport to be dominated by Reynolds
stresses (although viscous forces do remain impor-
tant for energy dissipation at very small scales). The
relevant length scale becomes that of the largest ed-
dies, R. Velocity, meanwhile, can still be scaled by
uτ, which is related to the wall stress and therefore
affects the entire profile.

In the 1930s Clark Millikan proposed that if the
inner region is much thinner than the outer one,
there may exist an overlap region—a “(possibly)
small but finite region near the wall”3 where both
the inner and outer scalings apply. Using dimen-
sional and overlap arguments, he showed that the
mean velocity profile in the overlap region should
follow a logarithmic law: u+ = κ−1 ln y+ + C, where the
constant C depends on details of the flow, but κ,
known as von Kármán’s constant, is thought to be
universal. The result is the same one that was de-
duced by Ludwig Prandtl in 1925. (Here, we’ve
nondimensionalized according to the inner-region
length scale; an expression nondimensionalized ac-
cording to the outer-region length scale takes a sim-
ilar form.) Millikan’s result has received widespread
experimental support.4

In the 1970s, Alan Townsend recognized that in
the overlap region the Reynolds stress ρu′u′― behaves
in a similar way, in the sense that both the inner and
outer scalings apply. Townsend argued that the ed-
dies in the overlap region are essentially attached to
the wall—their size scales accordingly with their
distance y.5 Summing over the contributions from
those attached eddies, Townsend predicted that the
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Figure 2. Pipe-flow velocity profiles. (a) In a laminar flow, velocity
varies smoothly—as a parabola—across the pipe cross section. (Here,
u‾ is the time-averaged streamwise velocity at a given distance y from
the wall.) (b) In a turbulent flow, mixing driven by turbulent eddies
results in a time-averaged velocity profile that’s nearly uniform in the
bulk flow but falls sharply in the thin region near the wall.



Reynolds stress should follow its own logarithmic
law: u′u′―+ = u′u′―/uτ

2 = B − A ln(y/R), where the con-
stant B depends on the details of the flow, but A is
expected to be universal. (Again, although we’ve
nondimensionalized according to the outer-region
length scale, an expression nondimensionalized ac-
cording to the inner-region length scale takes a sim-
ilar form.)

Unlike the log law of velocity, the early evidence
in support of Townsend’s law of Reynolds stresses

was rather circumstantial. Both derivations rest on
the assumption of a large separation of length
scales—that is, large Reτ. Indeed, for many real
flows—including flows past ships and planes and 
atmospheric flows across the Earth’s surface—Reτ is
on the order of 104–106 (see figure 3). Until recently,
however, even state-of-the-art experimental facilities
could achieve at most Reτ ~ 5 × 103—sufficient to see
hints of Townsend’s log law but not to definitively
confirm it. (Some atmospheric boundary-layer exper-
iments can achieve Reτ of order 106, but the experi-
mental challenges are numerous and the data tend to
be of poorer quality.) In the 1990s there was a major
push to establish facilities capable of achieving
higher Re flows. And that is where the story of wall-
bounded turbulence takes a new and exciting turn.

At the frontiers of turbulence
In the march toward higher Reynolds numbers,
three experimental facilities were especially note-
worthy: the Princeton University Superpipe, which
uses compressed air as the working fluid; the large
boundary-layer wind tunnel at the University of
Melbourne in Australia; and the Large Cavitation
Channel, an immense water tunnel established by
the US Navy in Memphis, Tennessee. Around the
turn of the century, those facilities began yielding
high-precision measurements of near-wall velocity
and stress profiles at Reτ of order 105.

Results from a Princeton experiment are shown
in figure 4 and clearly exhibit the logarithmic profile
of streamwise Reynolds stresses predicted by
Townsend. Moreover, the logarithmic portions of
the velocity and turbulent-stress profiles coincide in
space. That universality was previously suspected,
but has only now been confirmed. 

A few features of the plot deserve a closer look.
First, the inner region is remarkably thin, less than
1% of the pipe radius. Second, Reynolds stresses 

are larger in the inner region
than in the outer one—an indi-
cation that turbulent momen-
tum transport is strongest near
the wall. Because those stresses
must equal zero at the wall, the
data suggest that a peak in tur-
bulent momentum transport
lies in the inner region. Other
experiments,4 not shown, indi-
cate that the peak remains fixed
at y+ ≈ 12 as Reτ increases. At the
same time, the scaling of the
Reynolds stress indicates that
the logarithmic region makes
an increasingly important (and
eventually dominant) contri -
bution to the overall energy 
balance.

Viscous forces, on the other
hand, are always strongest near
the wall, but they decay quickly
with increasing distance from
it. As Reτ grows, the viscosity-
dominated region becomes in-
creasingly thin and increas-

ingly difficult to resolve in experiments and
computations.

New physics, new computations
Ultimately, scaling laws like those derived by 
Millikan and Townsend tell only part of the story of
turbulent wall-bounded flow. To obtain a more de-
tailed picture and to describe flows with more 
complicated geometries, one typically must turn to
computation.

The ideal approach is to numerically solve  the
system’s momentum and mass balances, the Navier–
Stokes and continuity equations, respectively. In di-
rect numerical simulation (DNS), one solves those
equations at grid points on a mesh; reliable results
require a mesh size comparable to the smallest
length scale of motion in the system. Thus, capturing
the spatial fluctuations of a three-dimensional tur-
bulent flow requires on the order of Reτ

9/4 grid points.
Capturing the fluctuating field in time and account-
ing for additional computing overhead6 requires
computer resources that scale nominally as Reτ

4.
Considering many real-world flows have Reτ > 106,
the computing costs associated with DNS can
quickly become prohibitive.

At the other end of the computing spectrum are
what’s known as Reynolds-averaged Navier–Stokes
(RANS) methods, which solve time-averaged ver-
sions of the Navier–Stokes and continuity equa-
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Figure 3. A turbulent flow can be characterized by a Reynolds number Reτ, commonly 
interpreted as the ratio of the flow’s largest and smallest length scales of motion. The real-
world systems represented here—(a) human blood flows, (b) wind farms, (c) engines, 
(d) cargo ships, (e) hurricanes, and (f) atmospheric winds—span several orders of magni-
tude in Reτ. (Figure courtesy of Olivier Cabrit.)



tions. The Reynolds stresses due to velocity fluctu-
ations are then calculated based on empirical mod-
els. Fast and cheap, RANS methods are the work-
horse of industry. But they can be unreliable when
applied to flows for which the Reynolds-stress mod-
els haven’t been calibrated.

Large eddy simulation (LES) is a middle way:
It solves the complete Navier–Stokes and continuity
equations for large-scale motions and then invokes
an empirically determined effective viscosity to de-
scribe forces at the smallest scales. Because LES cap-
tures much of the unsteady and 3D nature of turbu-
lence, it can describe many practical flows with a
greater fidelity than RANS. 

However, when a wall is present the LES grid
is typically constrained by the near-wall region,
where turbulent and viscous momentum transport
occur on small scales (see figure 5a). As a result, for
wall-bounded flows the computational costs of LES
are estimated to scale as Reτ

1.8, only a modest savings
over DNS.7 If, instead, one could empirically model
the flow in the near-wall layer (see figure 5b), the
grid requirements could be greatly relaxed, which
would lead to a significant payoff; it’s estimated that
the computational costs would scale as Reτ

0.2.
In the 1970s James Deardorff 8 and Ulrich Schu-

mann9 independently attempted to develop such
wall-layer models. They approximated the bound-
ary conditions based on time-averaged properties of
the logarithmic region. That general approach is still
in use today in various forms, but because it doesn’t
account for the time-dependent nature of turbulent
interactions, it has achieved limited success in de-
scribing high-Re flows (Reτ > 104). 

Here insights from high-Re experiments—in
Princeton and Melbourne and at the University of
Illinois at Urbana-Champaign—should be helpful.
Those studies all revealed unexpected flow struc-
tures known as very large scale motions2 or super-
structures,10 which extend as far as 10–30 R in the
streamwise direction in pipe flow. At high Re, those
superstructures can contribute up to 20% of the tur-
bulent kinetic energy of a pipe flow. 

What can those motions tell us about the much
smaller eddies near the wall? We have postulated
that the near-wall motions follow a universal behav-
ior, independent of the flow geometry, and that
those motions are modulated by the superstruc-
tures, such that the actual velocity field at the wall
is a superposition of the near-wall-eddy and super-
structure velocity fields.11 Indeed, measurements
suggest that the superstructures so impose a very
low frequency modulation on the near-wall velocity
fluctuations. Crucially, the parameters of the super-
position and modulation can likely be derived from
the velocity signature in the logarithmic layer.

Efforts toward implementing the wall-layer
model into LES are ongoing, but preliminary results
are encouraging and have shown trends that are in
line with experimental evidence.12 The approach
holds promise for extending the computationally ac-
cessible Re range up to that of atmospheric boundary-
layer experiments. 

Another valuable aspect of such wall-layer
models is that they elucidate the connection between

superstructures and the intensity of the local wall
stress. Such information could plausibly reveal new
strategies to reduce drag by manipulating the super-
structures, which are more accessible inputs for con-
trol schemes than the near-wall motions that have
been targeted in the past.

Zettaflops and yottabytes
Advances in camera, laser, and computing tech-
nologies have vastly improved our ability to obtain
time- resolved velocity fields and other information
about the dynamics of high-Re flows. However,
DNS remains an important tool for generating high-
fidelity, fully 3D data that are difficult to obtain ex-
perimentally. Moreover, DNS will continue to serve
as a benchmark for new measurement techniques
and new LES models.

To date, DNS of wall-bounded turbulence has
been limited to relatively low Reτ, at most around
4 × 103. (A simulation at Reτ = 5 × 103 by Robert
Moser and colleagues, currently ongoing, promises
to set a new record.) A tentative consensus is that
simulations at Reτ = 104 would probably be suffi-
cient to answer many of the field’s open questions—
and that threshold could conceivably be reached be-
fore the end of this decade. Still, it is interesting to
consider the computing resources required to carry
out DNS at the high values of Reτ currently achiev-
able in experiments. 

According to calculations by Javier Jiménez13

that were adjusted to reflect the decreasing memory-
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Figure 4. Experimental measurements of the nondimensional
mean streamwise velocity u+ (red circles) and dimensionless stream-
wise turbulent stress u′u′―+ (blue squares) in a pipe flow with
Reynolds number Reτ = 98 000. (Overbars indicate a time average;
u′ represents a velocity fluctuation.) In a thin region (log layer,
green) near the wall, both quantities scale logarithmically with 
dimensionless distance y+ from the wall, as indicated by the fitted
curves (black). The log layer represents the overlap of an inner 
region dominated by viscous forces and an outer region dominated
by inertia forces. (Adapted from ref. 16.)



to-computing speed ratio in high-performance com-
puters, one would need more than 10 zettaflops
(10 × 1021 floating-point operations per second) of
computing power to complete a DNS at Reτ = 105 in
a typical time. According to the TOP500 project,14 the
world’s fastest computer can perform at just one -
millionth that speed, at about 33 petaflops. Assum-
ing computing speed continues to grow at its current
exponential rate, DNS at Reτ = 105 won’t become 
feasible until roughly 2035.

Even if high-Re simulations do become realiz-
able in the coming decades, tools for processing and
handling large data sets will need to keep up. DNS
simulations at Reτ = 104 and Reτ = 105 would gener-
ate 23 terabytes and 23 petabytes of data per time
step, respectively. Simulating the required 107 time
steps at Reτ = 105 would produce around 0.2 yot-
tabytes—more digital content than currently exists
in the entire world. 

Clearly, storing all of that information would 
be neither feasible nor desirable. Simulating high-
Re flows will require selective storage of data as they
are being generated, which in turn will require a
high-level appreciation of the physics. The same ap-
plies to laboratory and field studies, where the rap-
idly increasing size of data sets generated in 3D,
time- resolved experiments is becoming a major
issue. The process will likely be an iterative and

evolving one, with the ultimate goal being to formu-
late high-fidelity empirical models. 

Gathering momentum
In this article we have focused on relatively simple,
canonical wall-bounded turbulent flows. Other chal-
lenges emerge if one wants to model turbulent flows
having additional parameters or complications such
as compressibility, shock waves, multiple phases,
combustion, density jumps, body forces due to pres-
sure gradients, and magnetic fields. Each problem
presents specific challenges, but a common thread
remains: the need to understand how various-sized
eddies emerge, evolve, and interact in the flow.

In the coming years, computational, experimen-
tal, and modeling efforts should continue to produce
new advances. Computing resources will undoubt-
edly continue to improve, although those changes
will also require new approaches and technologies
for handling vast data sets. New experimental facil-
ities will also be important, and at present several
such facilities are either under construction or under
development, including sulfur fluoride tunnels in
Göttingen, Germany; the CICLoPE pipe facility in
Predappio, Italy; and a turbulent convection facility
in Ilmenau, Germany. 

Turbulence has been the focus of concerted re-
search efforts since the work of Osborne Reynolds
more than a century ago, and the general study of
the topic dates back even further. The field’s recent
advances bode well for the foreseeable future, and
we anticipate—and certainly hope—that the mys-
teries of turbulence will not have to wait yet another
century to be solved. 
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Figure 5. The grid spacing in a large eddy simulation must be fine
enough to resolve all but the smallest length scales in a turbulent
flow. In this simulated boundary-layer flow, red and blue areas indi-
cate eddies, and the arrows indicate the mean streamwise velocity u‾
at various distances y from the wall. (a) For standard large eddy simu-
lation, the necessary grid spacing is exceedingly fine due to the very
small scales in the near-wall region. (b) A coarser grid can be used if
the inner layer near the wall, shaded white, is described instead by an
empirical model. (Adapted from ref. 7.)


