Magnetic Field Instrumentation

Spacemag Three-axis Magnetometer

- Designed and tested for use in space
- 100kRad version available
- Noise: <20pTrms/VHz at 1Hz

Three-Axis Helmholtz Coil System

- Field generated up to 500μT for DC and up to 100µT at 5kHz
- 0.1% homogeneous field of 4.5cm³
- DC compensation up to 100µT

Mag-03 Three-Axis Magnetic Field Sensors

- Measuring ranges ±70μT to ±1000μT
- Frequency response from DC to 3kHz
- Noise levels <6pTrms/√Hz at 1Hz

Custom design service available

www.bartington.com

Although Lomonosov may have assumed that Venus has an atmosphere, then set out to prove it by making direct observations during the transit, and then calculated the atmosphere's thickness based on its potential refracting effects, we remain unconvinced that he truly observed any of the actual phenomena—such as the aureole—on which the proof that Venus has an atmosphere now securely rests.

References

- 1. R. A. Rosenfeld et al., J. R. Astron. Soc. Can. 107, 29 (2013).
- 2. J. M. Pasachoff, W. Sheehan, J. Astron. Hist. Herit. 15, 3 (2012); Sky and Telescope, January 2013, p. 86.
- 3. B. E. Schaefer, J. Hist. Astron. 32, 325
- 4. J. M. Pasachoff, G. Schneider, L. Golub, in Transits of Venus: New Views of the Solar System and Galaxy, D. W. Kurtz, ed., Cambridge U. Press, New York (2005), p. 242.

William Sheehan

(sheehan41@charter.net) Lowell Observatory Flagstaff, Arizona

Jay Pasachoff

(jay.m.pasachoff@williams.edu) California Institute of Technology Pasadena, California

■ The Quick Study regarding Mikhail Lomonosov's viewing of the 1761 transit of Venus is disturbing for a number of reasons. The authors claim that an achromat objective "focus[es] all colors to the same point," which is well known to be false. Achromats, whether their two lenses are cemented together or separated by air, bring two wavelengths—typically blue and red light to a common focus while leaving other wavelengths significantly uncorrected for axial chromatic aberration. But more serious is the authors' use of smoked glass as the solar filter. Viewing the Sun through smoked glass can damage an eye in several ways. The 1/1700 attenuation cited by the authors for their actual solar filter is dangerously weak. Moreover, placing their smoked glass at the eyepiece rather than at the objective lens makes it even more apt to produce eye damage because of the higher concentration of solar energy at the eyepiece-which therefore needs additional attenuation—coupled with the increased risk that the concentrated heat will cause the filter to crack.

The author's own statement in the article makes the case: "Solar viewing was barely tolerable" with their smoked glass. Naive readers attempting to replicate solar viewing in this fashion risk

damaging their eyes. Those readers would probably have no method of verifying the attenuation level of a piece of smoked glass across the UVvisible-IR spectrum, so the experiment would be for them a trial-and-error process. Error in this case could cost one his or her eyesight.

David Stoltzmann (dstoltzmann@msn.com) Optical Engineering of Minnesota Prescott Valley, Arizona

Electrostatic effects in living cells

he classical Brownian motion theory used so imaginatively in the article by Eli Barkai, Yuval Garini, and Ralf Metzler (PHYSICS TODAY, August 2012, page 29) ignores fluctuations in the electric field. The theory allows fluctuation in number density, or concentration, of solutes in biological systems. But those solutes are almost always charged, whether they are the "bioions" Na+, K+, Cl- nearly always present in the mixtures inside and outside cells or whether they are divalents, like Ca²⁺ or Mg2+; nucleic acids, like DNA and RNA; the organic acids and bases of cell metabolism; or proteins, like ion channels and enzymes.

Fluctuations in the concentration of charged species must produce fluctuations in the electric field. Although such fluctuations are not present in the classical theory of Brownian motion, fluctuations are large and unshielded on the time scales used in simulations of molecular or Brownian dynamics. And not only will the fluctuations in electric field be different in different places, they are likely to have widely variable, highly nonlinear effects.

The diffusion produced by the fluctuations is an important determinant in numerous biological functions, such as resting and action potentials, cell motility, and enzyme activity. But diffusion and thermal motion contribute very differently to various functions because cellular function involves such a broad range of structures and molecules in which electric charge moves in different ways.

The thermal motion of coupled, charged systems, which include nearly everything inside a biological cell, is likely to be anomalous when interpreted in terms of the classical Brownian motion theory of uncharged particles. Classical theory should not be used to describe the random motion or macro-