

But that understanding is based on laboratory studies and prescribed burns in small fields. An experiment led by Cornell University's Cathelijne Stoof, who at the time was working at Wageningen University in the

Netherlands, now provides evidence that in more heterogeneous conditions the opposite may occur—the hotter the fire, the cooler the soil. To study the effects of landscape and fire dynamics on soil temperature, the group mapped a 0.1-km² shrub-covered watershed in Portugal, installed 52 thermocouples throughout the region, and then set it ablaze. Although the most thickly vegetated areas burned at temperatures as high as 800 °C, topsoil in those areas remained below 100 °C. The soil temperature remained low, the researchers argue, because large air-temperature gradients increased the upward transport of heat and dense vegetation contained the most moisture. Dry, sparsely vegetated areas that burned less intensely, in contrast, suffered the greatest damage; their soil reached more than 300 °C in places. Managers of fire-prone ecosystems could use the results to decide how, where, and when to set off controlled burns. (C. R. Stoof et al., Geophys. Res. Lett., in press, doi:10.1002/grl.50299.)

rirst results from the *Planck* microwave telescope. The European Space Agency's Planck satellite, launched in 2009, surveys the entire sky at microwave and submillimeter wavelengths with much better sensitivity, angular resolution, and spectral coverage than was available to earlier generations of microwave orbiters. Planck's main objective is to measure the parts-per-million spatial temperature fluctuation of the cosmic microwave background—the light from the first moments of cosmic transparency, 3.7×10^5 years after the Big Bang. Precision measurements of its tiny, random departures from thermal isotropy on all angular scales inform and constrain cosmological models. Now the *Planck* collaboration has presented the results of its first 16 months of observation in 28 simultaneously released papers; the team's overview paper is cited below. The principal finding is that cosmology's widely accepted concordance model is alive and healthier than ever. Some of its fundamental parameters have suffered interesting tweaks, but none that clearly require new physics or additional parameters in the model's scenario of cosmic birth, inflation, and structure formation. For example, the cosmic inventory of matter and dark energy has shifted by a few percent toward more matter, with a consequent slight reduction of the expansion rate and a mere hundred million years added to the previous best estimate (13.7 \times 10 9 years) of the age of the universe. (P. A. R. Ade et al., Planck collaboration, Astron. Astrophys., in press, http://arxiv.org/abs/1303.5062.) -BMS

deal point source for modeling room acoustics. When analyzing the characteristics of sound—be it in a concert hall, a doctor's office, or a city street—acousticians can't always have unfettered access to the soundscape. So they

build scale models and adjust the sounds' frequencies and amplitudes accordingly. A broadband, omnidirectional source of sound is very useful to modelers, and electrical sparks have been used to that end for many years. But the waveforms that emanate from electrodes are not only directional but vary from spark to spark in unpredictable ways. In addition, the electrodes' presence can complicate the sound propagation. So a group of acousticians at Aalto University and Helsinki University, both in Finland, came up with a solution that has been effective for studying shock wave propagation: They used a laser-induced pressure pulse (LIPP). When a point in space is heated to thousands of degrees by a focused laser, a local dielectric breakdown in air gives rise to an electrodeless spark that sends out a pressure wave—the LIPP. In their version, the acousticians focus a pulsed laser and send it into the scale model through an acoustically opaque glass window. Projected into the enclosed space, the LIPP has all the hallmarks of an ideal acoustical point source: It produces a lot of sound while being small, massless, omnidirectional, and broadband. (J. G. Bolaños et al., J. Acoust. Soc. Am. 133, EL221, 2013.)

The crystal structure of a lower-mantle mineral. Just above Earth's liquid outer core lies a 200-km-thick region, dubbed D", whose properties differ from those of the rest of the mantle. Long a mystery, the origin of D" became clear in 2004 when the most common mineral in Earth's mantle, magnesium silicate (MgSiO₃), was found to change its crystal structure at conditions that prevail in D"—that is, at pressures above 120 gigapascals and temperatures above 2500 kelvin. A new study by Ho-Kwang Mao of the Carnegie Institution of Washington and his collaborators sheds further light on the transition. Like their predecessors, Mao and his team used a diamond anvil cell to apply pressure, a laser to apply heat, and x-ray crystallography to determine structure. As the transition neared, a hundred or so randomly

oriented crystallites of the highpressure phase nucleated within the micron-scale sample. To gather enough structural information about the ensemble. Mao and team rotated the sample through 51° in 0.2-degree steps, yielding 256 sets of overlapping diffraction patterns (see figure for an example). A computer algorithm

sorted through thousands of discrete spots to determine the

crystallites' orientations and structures. Be-

sides confirming previous results, Mao's study reveals that replacing 10% of the magnesium with iron barely alters the structure. An admixture of iron is expected in the lower mantle. Its lack of structural influence is encouraging, because it suggests that inhomogeneities in seismic data could be mapped to inhomogeneities in temperature and pressure, such as plumes and hot spots. (L. Zhang et al., Proc. Natl. Acad. -CD Sci. USA 110, 6292, 2013.)