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E xpected to reliably deliver power when-
ever and wherever consumers demand it,
today’s electrical grids are the largest 
engineered systems ever built. In recent
years these seemingly mundane collec-

tions of wires and generators have become the focus
of heated societal discussions as the grids of tomor-
row are designed and debated. The topics of those
discussions are quite interdisciplinary and range
from the analysis of large- scale blackouts1 to con-
trols for renewable-energy integration and smart
utilization of appliances.2 The debate is understand-
able because the systems affect almost every aspect
of our day- to- day lives.

Today’s grids already exhibit complex nonlinear
dynamics; for example, the collective effects of thou-
sands of induction motors found in air conditioners
and other small consumer appliances may produce
serious malfunctions of sections of grid. Such collec-
tive dynamics are not well understood and are likely
to become more complex as consumer appliances 
become more intelligent and autonomous. Today’s
grids have evolved to be resilient only against simple
perturbations like the sudden loss of a generator. 
Tomorrow’s will have to integrate the intermittent

power from wind and solar farms whose fluctuating
outputs create far more complex perturbations.
Guarding against the worst of those perturbations
will require taking protective measures based on
ideas from probability and statistical physics. 

However, before tomorrow’s grids can be engi-
neered, and even before many of the phenomena in
today’s grids can be effectively controlled, scientists
and engineers must first understand the grid’s 
behavior over a broad spatiotemporal scale—from
milliseconds to hours and from tens of meters to
thousands of kilometers. In this article we outline
the physics and phenomena associated with grid 
behavior. For a broader treatment of control and 
optimization of the grid, interested readers can turn
to the recent literature.2,3

Grid physics
Basic physics largely determined the early evolution
of electrical power systems. Nikola Tesla’s alternating-
current designs were favored over Thomas Edison’s
direct current because the materials and technology
available more than a century ago enabled easier
transformation of AC power between relatively low
voltage, at which it is generated and consumed, and
high voltage, which allows for low-loss, long-
 distance power transmission. Electrification pro-
ceeded with small, single- generator town-  or
county- sized power systems merging to create
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As our electrical grid systems become smarter and more autonomous, they require
greater control technologies to protect them from failing. 
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more reliable multigenerator networks.
That bottom- up evolution led to regionally

strong grids with weaker links to neighboring 
regions—a structure that affects the stability, reli-
ability, control, and economics of today’s North
American grids. In the US, the evolution culmi-
nated in several major grids (see figure 1), the
largest being the Eastern Interconnection, with 
approximately 40 000 nodes connected by some
50 000 transmission lines. 

Bottom- up evolution  wasn’t inevitable. Russia,
which industrialized later than the US, chose to de-
sign its power system top-down, starting with an 
interconnected, several- thousand- kilometer- long
transmission system; the smaller regional distribu-
tion systems were built and connected only after the
transmission network was available. Regardless of
the development path, the basic physical structure
and controls are more or less the same. The creation
of synchronized AC interconnections required the
selection and maintenance of a single frequency.
The early North American grid designers settled on
60 Hz while the Europeans chose 50 Hz. Although
many personal stories about the choices exist, the
reasons for them appear to be lost to history.

An electrical grid is split into two main types of
networks: a large- scale transmission grid and many
distribution grids, each covering a relatively smaller
area. The high- voltage (100–1000 kV) power lines of
the transmission grid form a highly meshed net-
work with an average number of line connections
per node of about 2.5 and a typical line length of 
100 km. The transmission network is fed by power in-
jections from centralized, roughly 500- to 5000-MW
generating stations and transfers that power in turn
to substations, which transform it to lower voltage,
typically 10–30 kV, for delivery to customers.

Those substations have historically served as
the physical and model endpoints of the transmis-
sion network. The lower- voltage distribution grids
consist of many short, tree- like circuits, each a few
megawatts, that extend from the substations (see the
article by Clark Gellings and Kurt Yeager in PHYSICS
TODAY, December 2004, page 45). 

Power and phase
Transmission and distribution grids obey the same
physics. Here we lay it out in the context of the
transmission grid. Power lines carry oscillating elec-
trical current, but that current is typically associated
with two types of power—real power P and reactive
power Q. Real power flows when the oscillating
electrical current is in phase with the oscillating
voltage V = v exp(iθ) in standard phasor notation,
where v is the voltage amplitude. The time-
 averaged flow of real power does useful work, such
as turning motor shafts. 

When the current is 90° out of phase with voltage,
electrical energy sloshes back and forth in the 
transmission grid within an AC cycle. Those flows do
no useful work but certainly affect the oscillating volt-
age throughout the grid. It is convenient to describe
the oscillating power on the same footing as real
power P by defining the time- averaged reactive power
Q as positive when the voltage leads current by 90°.

Electrical loads consume P from the transmis-
sion grid, and they typically also consume Q. The in-
jection and consumption of power occur at different
nodes a in the grid, and transmission lines move the
power from generators to loads. When all injections,
loads, and line losses are in balance, the grid is in a
steady state. Changes in loads and intermittent
power fluctuations from renewable energy sources
are mostly compensated by control systems that
modify the mechanical power fed to generators. But
those control systems respond slowly, over several
seconds, and the fluctuating imbalances produce
changes in the kinetic energy stored in the large 
rotational inertia Ia of individual turbine generators.
The loss of kinetic energy leads to a deceleration of
the generators and thus a deviation in the local grid
frequency θ̇a from its nominal 60 Hz.

The mathematical representation of that
process is captured by the “swing equations,” an ap-
proximation of the basic power balance and grid dy-
namics at time scales longer than a few AC cycles:4

       
   (1)

Here, (a, b) indicates the existence of an electrical line
between nodes a and b, Zab represents its complex 
impedance as a sum of resistance and reactance
Rab + iXab, asterisks denote complex conjugation, and
the local frequencies θ̇a are measured as differences
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When reactive losses in transmission lines are ignored, the real and
imaginary components of equation 1 in the main text can be stated as
derivatives of the scalar energy function

with respect to the phases θa and the voltage amplitudes va. That is, in
the steady state,

In E(θ, v), a and b represent nodes, Xab is the reactance, and the last 
summation spans all lines in the network. 

The energy function E may be thought of as a potential energy 
created by the flows of real and reactive power in the system’s trans-
mission lines. Changes in potential energy caused by changes in those
flows are converted into kinetic energy through concomitant changes
in rotational speed θ̇ of generator rotors. The first two terms of E repro-
duce power inputs and outputs (Pa and Qa) in equation 1 of the text.
They reshape the energy function and drive the steady state away from
a “no- current” Va = Vb equilibrium solution favored by the last term in E.
The nonequilibrium solution has Va ≠ Vb and transfers power through
the network.

The landscape of the energy function depends on circuit parameters
and may (or may not) have a single or multiple finite-voltage minima, as
figure 2 of the text demonstrates.

∣ ∣Vb
2Va −

Xab
E(θ v P θ, ) = − −a a∑ ∑ Q log +a av ∑

a ( , )a  b

,

= 0 and .= 0
∂θa ∂va

∂E ∂E

Energy function method



from the nominal frequency. The term τaθ̇a repre-
sents the mechanical damping of frequency devia-
tions θ̇a due to control of the generators’ input power.
And τ a

(v) v̇a represents a reactive-power control that
counteracts local voltage deviations; the variables 
τa and τ a

(v) are time-relaxation parameters.
For a generator at node a, the right-hand side

of equation 1 describes the balance (or imbalance)
of power injections Pa and Qa with the last term—
the real and reactive power flowing away from the
node through a transmission line of impedance Zab.
In steady state, the right-hand side is zero and the
grid operates at a spatially uniform frequency. But
when imbalances do exist, generators interact with
each other to create a complex network of coupled
oscillators. This simplest representation of the
physics treats only dynamics among generators. A
more complete description, which includes load
dynamics, can be found in the power-engineering
literature.4

Reliability and stability
Ideally, the transmission grid would always operate
precisely at 60 Hz at a spatially constant, normalized
voltage, even as its millions of consumers impose
varying loads at tens of thousands of substations.
But equipment failure, nonzero transmission-line
impedances, and the finite response time of each
generator to changing power demands mean the

grid is always awash in spatial and temporal
deviations about that ideal. Operators of the
grid maintain its reliability by ensuring that
those deviations never grow to catastrophic
size while keeping the cost of electricity as
low as possible.

The reliability of today’s most sophis-
ticated transmission grids is assessed, as
often as every five minutes, primarily
against three criteria: so-called (N − 1) 
feasibility, transient stability, and voltage
stability.4 The first criterion verifies that a
feasible steady- state power-flow solution
of equation 1 exists with any one of N major
components, such as a major generator or
transmission line, removed from the net-
work. Transient stability verifies, typically
via the integral of equation 1, that the 
dynamics excited by each N − 1 event (and
other plausible perturbations) actually
reach the new steady state. And voltage
stability gauges the robustness of the
steady-state solution to changes in electri-
cal loading, represented by Pa and Qa in
equation 1.

Although blackouts and other inter-
ruptions of service still occur, the three
stability metrics serve today’s grids well.
Nevertheless, grids are changing in signif-
icant ways—incorporating, for instance,
time-intermittent wind and photovoltaic
power in large-scale transmission grids
and in consumer-scale distribution grids.
The changes will lead to grids that are
more stochastic and exhibit dynamics 
requiring new stability criteria that ad-

dress emerging problems and can be evaluated
faster, closer to real time.

Voltage collapse
The traditional engineering approach to modeling
power systems emphasizes the quantitative behav-
ior of individual grid devices. A physics-based 
approach, by contrast, attempts to capture the un-
derlying phenomena by using the fewest number of
modeling parameters required. That is the approach
we outline here.

The damped dynamics of harmonic oscillators
described on the left-hand side of equation 1 are
driven by terms on the right, which represent a non-
linear mix of power injections and consumptions at
all the nodes. The complexity of those driving terms
makes it difficult to intuitively understand the 
dynamics. Energy function methods,5 whose details
are briefly outlined in the box on page 43, represent
one approach to analyzing the dynamics in a way
that enables a succinct and intuitive restatement of
equation 1. Briefly, the grid’s state as a function of
phase and voltage can be imagined as moving along
the contours of a high- dimensional potential energy
landscape E(θ, v).

Figure 2 shows two such energy landscapes,
each with a constant P and constant Q load con-
nected to a constant- voltage node through a single
inductive transmission line. In the lightly loaded

44 May 2013 Physics Today www.physicstoday.org

Electrical grid

345–499 kV
500–699 kV
700–799 kV
1000 kV (DC)

Figure 1. The US transmission grid is a complex network of local and regional
power authorities. Shown here are transmission lines that carry power at 345 kV
and higher, with bolder lines indicating higher operating voltage. (Lines that 
operate at lower voltages are too numerous to show.) The grid is divided into three
regions that operate independently, each with its own AC frequency, although
there also exist high-voltage DC lines that transport large amounts of power over
large distances and a few weak DC ties that transfer power at the regional 
interfaces. Load patterns, often arising from population distribution, can influence
the grid’s directional character. For example, the western region (green) is largely
one dimensional, as power generally flows along coastal states from north to
south. In the Eastern Interconnection (pink), by contrast, flows are distributed 
more uniformly over broad areas. (Adapted from National Public Radio, Visualizing
the U.S. Electric Grid, 2009. Used with permission.) 



case (left) there exists a local minimum energy at 
finite voltage, separated by a saddle point from a
global minimum at which the voltage collapses to
zero. If started in the finite- voltage steady state and
then perturbed slightly, the system orbits around
the local minimum at constant total energy. Small
dissipations will return the system to that locally
stable steady state, but for larger perturbations that
create an energy above that of the saddle point, the
system heads inexorably toward the global mini-
mum at v = 0. The excessively low voltage generates
blackouts by prompting protective equipment to
disconnect parts of the grid. 

As the latter case illustrates, if the same system
is too heavily loaded, voltage collapse is inevitable;
a local minimum doesn’t even exist.6 Although the
energy functions in both cases describe an ex-
tremely simple two- node system, the same kind of
evolution on an energy landscape applies equally
well to realistic 40 000-node grids.

Synchronization of node frequencies
When the grid is in steady state, the local frequency
deviations θ̇a need not be zero but should be syn -
chronized and relatively small at all nodes. Were that
not the case, the phase differences θa − θb between 
connected nodes a and b would grow over time and
the power flow between them would oscillate. The
rapid transfers of electrical energy would cause rapid 
fluctuations in the rotational kinetic energy of large
generators, and the resulting huge mechanical stresses
could easily damage those expen sive machines.

To ensure the continual synchronization of the
frequency, a local stable minimum in the energy
function (discussed in the box) must exist. Unfortu-
nately, the equation is complex and nonlinear,
which makes finding a minimum and verifying its
stability to perturbation difficult. Building on re-
sults7 from the 1980s, recent work reconsidered the
energy function approach for an approximation that
fixes the normalized voltage at all nodes to unity.8

Interestingly, one can show that if a quadratic 
approximation for E(θ, v = 1) has a steady state with
∣θa − θb∣ < 1, then the original energy function has a
stable minimum. 

That statement has been proven for the case of
tree-like networks and has also been empirically
tested on meshed transmission grids. Finding the
phase differences in the quadratic approximation
can be reduced to solving the linearized and static
form of equation 1—a computationally efficient
process.

Electromechanical waves
The second-order derivative of θa in equation 1 
creates some interesting phase dynamics that are
described by a linear approximation:

                                        
(2)

But in the case of large grids having fairly uniform
properties, one need not take a discrete sum over
connected nearest-neighbor nodes a and b. Instead,

Iaθ τ θ+a a a
˙̇ ˙ = −Pa

( , )a  b

∑
θa − θb

Xab
.
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Figure 2. A loaded transmission line (top) connects two nodes—one a source of constant voltage, the
other a big consumer drawing real and reactive power loads P and Q. An energy function E(θ, v) describes the
potential energy landscape of the system as a function of the voltage’s phase θ and amplitude v. The function
has a logarithmic singularity as v goes to zero. When the line is lightly loaded (bottom left), a local minimum
(green) exists at v ~ 0.85 and θ ~ 0. For small power fluctuations, that minimum is stable and sits below a 
saddle point (orange). But as the load changes, so does the shape of the landscape. And at a high enough
load (bottom right), the system’s voltage collapses to zero at the global minimum (red). 



one can model the grid as a continuous system.9 For
long-length perturbations that span many nodes,
that sum is approximated by a Laplacian of the
now-continuous phase. The result is an electro-
mechanical wave equation for θ having a constant
phase velocity. Typical velocities are about 500 km/s
in a moderately loaded grid that generates 100 MW
every 100 km; the velocity decreases, though, as the
grid becomes more heavily loaded. 

Simulations of equation 2 reveal the wave 
nature of the electrical grid, including coherent 
frequency and phase oscillations that span it.10

Those oscillations are manifestations of electro-
mechanical standing waves—typically with fre-
quencies less than a hertz and wavelengths around
2000 km. When the transmission grid is hit with a
sudden, localized disturbance—the loss of a large

generator, say—an electromechanical traveling
wave propagates away from the source of the dis-
turbance. Surprisingly, the greatest impact of the
disturbance may be felt at locations remote from the
source, as the wave constructively interferes with its
reflection at the edge of the grid.

Statistical distance to failure
The grid is deemed reliable, at least according to
(N − 1) feasibility, if it can operate in a state that’s 
robust to perturbations that arise when any of the
grid’s major components fail. However, as renew-
able-energy generators are increasingly integrated
into the grid, their time-intermittent outputs are
likely to cause the grid to break down in ways not
currently captured by that deterministic criterion.
For example, the frequency controls (represented by

the τaθ̇a term in equation 1) on large
generators respond to fluctuating
power output by changing their
own outputs, which can potentially
overheat a transmission line be-
yond its thermal limit. 

New probabilistic methods,11

developed in the power engineering
community and complemented by
recent techniques based on the analy-
sis of rare events, can measure the
risk created by those fluctuations.12,13

To see how, consider figure 3, a
schematic representation of a test
grid to which several renewable-
energy generator nodes have been
added. Each of those new nodes rep-
resents an axis along which the state
of the electrical grid may fluctuate.
In the space of possible deviations in
output (such as the green plane S),
some fluctuations in power preserve
the grid’s integrity while others
cause it to fail by, say, exceeding
transmission-line capacities. Those
limited capacities split the plane into
feasible and infeasible regions. 

A probability distribution ρ(S)
of deviations from the likely fore-
casted power (the white dot in figure
3) can be estimated. For a grid with a
large number of renewable-energy
nodes, evaluating the integral of the
distribution over the infeasible re-
gion to obtain the probability of grid
failure is a quite difficult problem. A
computationally better strategy is to
estimate the most probable fluctua-
tion that resides in the infeasible 
region—the so-called instanton; bor-
rowed from theoretical physics,14 the
term describes a special, most proba-
ble “instance.”

If the function ρ(S) is well be-
haved, finding the instanton is tan-
tamount to maximizing the fore-
cast error over the boundary of the
globally feasible region. In general,
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Figure 3. This transmission-grid test model (a) is composed of 81 nodes, 9 of which
(squares) represent renewable-energy generators—for example, from wind and solar
farms.12 Traditional generators (green circles) and loads (yellow circles) make up the
rest of the network. Because renewables represent a time-intermittent source of
power, probabilistic methods help gauge their influence on the grid’s stability to
power fluctuations. (b) Imagine a space S (green) that represents the deviations
from an expected forecast (the white dot) of the power output from two renewable-
energy nodes (red and orange nodes 77 and 78). On that plane, one can estimate a
probability distribution ρ(S) of possible deviations. Certain combined fluctuations in
power from the two nodes can tip the network from a region where the grid can 
operate (the feasibility region) to one where it fails and becomes “infeasible.” The most
probable instances, or points along the regions’ interface where that occurs, are
known as instantons. The red and orange vectors point to two of them, and their 
locations in the plane indicate which lines in the network are most likely to fail.



that maximization is computationally hard. But if
only thermal line limits are considered and physi-
cally reasonable approximations are used, the 
feasible region becomes a tractable polytope with
2N facets that correspond to the thermal limits for
each direction of power flow of N transmission
lines. Moreover, if the probability distribution is
Gaussian, finding the instanton turns into a simple
comparison of 2N analytical expressions,12 and 
existing (N − 1) methods for judging the grid’s 
reliability can be brought to bear. Generalizing the
methods to account for other physical failures,
such as a loss of synchronization or voltage col-
lapse, is a significant research challenge.

Distribution grids and hysteresis
Because transmission-grid dynamics have been
dominated by large centralized generators in the
past, distribution-grid dynamics have traditionally
been ignored. Grid operators can no longer afford to
do that. New consumer devices—for instance, elec-
tric clothes dryers that disconnect to reduce real
power consumption when the grid frequency falls
below a preset threshold, and smart photovoltaic 
inverters that can quickly respond to local voltage
deviations by injecting or consuming reactive
power—will produce dynamics with the potential to
significantly affect the transmission grid. 

An awareness of distribution-grid dynamics is
increasingly important because transmission grids
are being operated closer to their stability limits.14

But when the transmission grid is connected to tens
of thousands of distribution circuits each serving
tens of thousands of small electrical loads, device-
 level modeling becomes intractable. Fortunately, a
limiting version of equation 1 yields a spatially 
continuous model that can be used to analyze many
important examples of distribution-grid dynamics.

Take the case of induction motors, the small
electrical motors that run air conditioning units or
refrigerators. Figure 4a shows the state of a typical
induction motor as a function of the voltage v at
its terminals. For v ~ 1 (the voltage near its nomi-
nal distribution value), the motor is in a “normal”
state, rotating at an angular frequency ω close to
the grid frequency and consuming relatively low
reactive power Q. If the voltage drops low enough,
however, the motor enters a “stalled” state with ω
falling to zero and Q rising high. The voltage of
the normal and stalled states overlap, and the
motor’s state is hysteretic. Transitions between
those two states—and the dynamics of the motor
in general—are primarily controlled by the
motor’s rotational inertia.

When a large number of such motors are
spread along a distribution circuit, as illustrated in
figure 4b, the large change in Q between an individ-
ual motor’s normal and stalled states induces long-
 range interactions between the states. The effect is
most pronounced when a large disturbance in the
local transmission system causes a drop in v large
enough (to about 80% of its nominal voltage) and
long enough (at least a few AC cycles) that all of the
motors stall. When the transmission disturbance
ends, the motors near the origin of the circuit, z = 0

in figure 4b, may quickly restart, but the collectively
large Q from the more distant stalled motors holds
down v for large z.

The result is the spatial segregation of normal
and stalled states across a phase boundary. The cir-
cuit recovers to a fully normal condition when the
phase boundary propagates to larger z—a situation
reminiscent of the dynamics of a first- order phase
transition. What’s more, simulations have shown
that the phase boundary behaves like a soliton,
maintaining a roughly constant shape as it propa-
gates at nearly constant speed.15,16

A glimpse of the future
The electrical grid is currently undergoing revolu-
tionary changes. Here, we outline a few technolo-
gies we believe will prove influential in the work-
ings of tomorrow’s grid.
‣ Phasor measurement units are finally bringing syn-
chronous detection of voltage and current to the grid.
The GPS time-stamped, high- speed, near real- time
data those devices provide will reveal grid dynamics
with much higher spatiotemporal resolution than has
previously been possible. (See http://www.eia.gov
/todayinenergy/detail.cfm?id=5630.)
‣ Flexible AC transmission (FACT) devices use fast-
switching power electronics to provide nearly instan-
taneous control of reactive power injections, AC 
voltage levels, and, perhaps most importantly, control
over real power flows through AC and DC transmis-
sion lines. Although so-called phase- shifting trans-
formers can already electromechanically control the
flow of real power over AC transmission lines, that
control is relatively slow. Indeed, line- by- line control
of real power flows is not possible in a FACTs- free
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Figure 4. Profiles of power, real P and reactive Q, and mechanical 
frequency ω for hysteretic models. (a) In the case of a single induction
motor, when the voltage v is low—at less than 80% of its nominal
value—the electric torque generated by the motor is below what’s
required by the load, and the motor remains “stalled” with ω stuck at
zero. Upon reaching a threshold at about 85% of v’s nominal value, Q
drops as the motor enters a “normal” phase. (b) When several motors
are connected to a distribution circuit, the system may exhibit a
boundary between normal and stalled phases, and the state of a
motor depends on its position z. For a phase boundary moving from
left and right, the small peak in P is the extra power required to
accelerate the motors as they make the dynamic transition from the
stalled state. (Adapted from ref. 16.)



transmission system. FACT devices will provide flex-
ibility and control, but they’ll also present a challenge
to grid operators, who need to understand the fast dy-
namics the devices will excite. (See http://spectrum
.ieee.org/energy/the-smarter-grid/flexible-ac
-transmission-the-facts-machine.)
‣ Large- scale electrical energy storage devices will
potentially simplify grid operations by relaxing the
need for instantaneous power delivery. Energy stor-
age devices are expensive, though. What’s more,
new algorithms are needed to optimally place and
operate them to ensure the grid’s reliability. (See
http://science.energy.gov/~/media/bes/pdf/reports
/files/ees_rpt_print.pdf.)

In this article, we have emphasized the physi-
cist’s view of the electrical grid. While that perspec-
tive provides an intuitive understanding of the grid’s
behavior, its broader impact will be to enable the 
development of better methods for monitoring and
controlling that behavior as the grid becomes
smarter and more autonomous. Nonetheless, a
physics analysis of the grid is, by itself, insufficient
for laying the groundwork for tomorrow’s tech -
nologies. It should be coupled with complementary
methods from operations research, computer sci-
ence, control theory, machine learning, and electrical
power engineering. We expect the most significant
advances to come from combining those disciplines.

We gratefully acknowledge support from the US Department
of Energy, NSF, and the Defense Threat Reduction Agency.

References
1. B. A. Carreras et al., Chaos 14, 643 (2004); R. Pfitzner,

K. Turitsyn, M. Chertkov, 2011 IEEE Power and 
Energy Society General Meeting, IEEE, Piscataway, NJ
(2011), p. 1. 

2. D. S. Callaway, I. A. Hiskens, Proc. IEEE 99, 184 (2011)
and references therein.

3. J. Lavaei, S. H. Low, IEEE Trans. Power Syst. 27, 92
(2012); D. Bienstock, M. Chertkov, S. Harnett,
http://arxiv.org/abs/1209.5779; and references therein.

4. P. Kundur, Power System Stability and Control, 
McGraw-Hill, New York (1994).

5. C. De Marco, A. Bergen, IEEE Trans. Power Syst. 34,
1546 (1987).

6. B. M. Weedy, B. R. Cox, Proc. IEE 115, 528 (1968); V. A.
Venikov et al., IEEE Trans. Power Appar. Syst. 94, 1034 (1975).

7. A. R. Bergen, D. J. Hill, IEEE Trans. Power Appar. Syst.
100, 25 (1981).

8. F. Dörfler, M. Chertkov, F. Bullo, Proc. Natl. Acad. Sci.
USA 110, 2005 (2013).

9. M. Parashar, J. S. Thorp, C. E. Seyler, IEEE Trans. 
Circuits Syst. I: Regular Pap. 51, 1848 (2004).

10. A. Chakrabortty, J. H. Chow, A. Salazar, IEEE Trans.
Smart Grid 2, 68 (2011).

11. F. Alvarado, I. Dobson, Y. Hu, IEEE Trans. Power Syst.
9, 918 (1994).

12. M. Chertkov, F. Pan, M. Stepanov, IEEE Trans. Smart
Grid 2, 162 (2011).

13. G. Falkovich et al., Phys. Rev. E 54, 4896 (1996).
14. D. H. Popović, I. A. Hiskens, D. J. Hill, Int. J. Electr.

Power Energy Syst. 20, 475 (1998). 
15. D. Wang, K. Turitsyn, M. Chertkov, http://arxiv.org

/abs/1209.5776. 
16. C. Duclut, S. Backhaus, M. Chertkov, http://arxiv.org

/abs/1212.0252. ■

Electrical grid

Solid State Design      Easy to Use      Low Cost                 

OEM’s #1 Choice
for XRF

AMPTEK Inc.             www.amptek.com

25 mm2 x 500 μm
11.2 μs peaking time
P/B Ratio:  20000/1

125 eV FWHM

Energy (keV)

Co
un

ts

SDD Spectrum
5.9
keV

55Fe

6.4
keV

Energy (keV)

Co
un

ts

6 mm2 x 500 μm
25.6 μs peaking time

P/B Ratio:  6200/1

145 eV FWHM

Si-PIN Spectrum
5.9
keV

6.4
keV

55Fe

530 eV FWHM
850 eV FWHM

122 keV

14.4 keV

Energy (keV)

Co
un

ts

CdTe Spectrum
57Co

Choose your detector

Choose your confi guration

Complete Spectrometer Experimenter’s Kit

OEM Components

Detector System


