
If there was no birth-time of earth and heaven
and they have been from everlasting, why 
before the Theban war and the destruction 
of Troy have not other poets as well sung
other themes?

—Lucretius, De rerum natura

E
ver since our distant ancestors began to
contemplate the world around them, the
question of its beginning has been on hu-
mankind’s mind. The above quotation,
from Lucretius’s first-century-BCE work 

De rerum natura, can be found in the treatise The Birth-
Time of the World, published in 1914 by John Joly, a
professor of geology at Trinity College Dublin. True
to his profession, Joly moves the realm of first events
from cultural achievements and mischief to the im-
personal planet Earth. He writes: “Notwithstanding
our limitations, the date of the birth-time of our geo-
logical era is the most important date in Science.”

Interest in the question of how it all began has
persisted throughout the millennia, but our under-
standing of what “all” sums up has evolved. Scien-
tific discoveries have led us to push the beginning
back to earlier and earlier times, and nowadays, fol-
lowing the advent and great success of modern cos-
mology, we tend to disagree with Joly and shift the
beginning to grander cosmic events. Physicists have
developed theories about the formation of galaxies
and the stars they contain, the nucleosynthesis of el-
ements, the genesis of protons and neutrons from
quarks, and more speculatively, the creation of mat-
ter excitations during cosmic inflation from nothing
but quantum fluctuations.

Exciting matter out of the vacuum seems to vi-
olate energy conservation, and indeed, conservation
laws are the strictest keepers of the gates of time: If
some quantities must remain constant, they cannot

begin to acquire nonzero values. At whatever time
we choose to mark “the beginning,” conserved
quantities must remain zero, exactly balanced. In
theory, inflation can produce matter energy, but only
by taking it from some other source—spacetime.  
According to general relativity, the  energy- balance
law includes not only the usual matter terms but also
a negative contribution from spacetime. The sum 
always remains zero, and matter can arise.

If matter forms under gravity’s sponsorship, it
cannot be part of the absolute beginning. Yet again,
we have to push the beginning backwards. Matter
emerges from spacetime, but how did space and
time begin? How can it even be possible that time
had an absolute beginning, with no time “before”?

The physicality of time and space
Spacetime is dynamical, affects matter, and is in
turn influenced by matter, obeying Einstein’s equa-
tion of general relativity. As a dynamical entity, it
could have had a beginning, according to a scenario
commonly associated with the Big Bang model. In-
deed, many solutions of Einstein’s equation show an
ever- expanding cosmos, starting at zero size. At
zero size, however, Einstein’s equation breaks
down; some expressions in the differential equation
diverge. A universe of zero size, the Big Bang singu-
larity, is not the beginning of spacetime but a limi-
tation of the theory. General relativity simply does
not address what might have been before the Big
Bang. It does not tell us there was nothing.

Quantum theory should provide a better grasp,
perhaps even of the beginning. We physicists are fa-
miliar with the creation of particles out of the vacuum.
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Quantum physics should also apply to spacetime, a
dynamical and physical object in its own right. But
problems loom. For instance, would a quantum 
theory of spacetime need to include fluctuations of
time or temporal superpositions? When Charles
Dickens wrote in A Christmas Carol, “the figure itself
fluctuated in its distinctness: being now a thing with
one arm, now with one leg, now with twenty legs,
now a pair of legs without a head, now a head with-
out a body,” he envisioned the number of limbs to
fluctuate, but time for him kept ticking at regular
beats of “now.”  Quantum- gravity theorists still
struggle with the notion of fluctuating time.

Quantum mechanics implies atomic building
blocks. It remains unclear what the elementary con-
stituents of spacetime are or what their absence
would mean. Empty space, the vacuum free of mat-
ter excitations, is not empty, for there is still space.
The vacuum of quantum gravity, devoid even of
spacetime excitations, would be emptier than empty
space. We are reaching the limits of logic and lan-
guage, and those limitations are a prelude to the
conceptual difficulties faced in quantum gravity.

Dimensional arguments provide estimates for
the microscopic scale of spacetime. Newton’s constant
G, Planck’s constant ħ, and the speed of light c give a
unique length parameter, the tiny Planck length
ℓP = √――Għ/c3 ≈ 10−35 m. A different combination results
in the Planck mass MP = ħ/(ℓPc) ≈ 20 μg, not extreme
unless imagined as the mass of an elementary particle.
The Planck length and the Planck mass define the
Planck density ρP = MP/ℓP

3, more than a trillion suns in
a region the size of a proton.

Those scales do not give much hope for exper-
imental tests. Indeed, the scientific community’s
observational abilities are far from being able to re-
solve the Planck length scale of spacetime atoms
and will remain so for decades or more to come.
Observations on large scales are one possible way
out; perhaps microscopic properties will manifest
themselves in many-body phenomena, as they do
in condensed-matter physics. 

Moreover, dimensional arguments can and usu-
ally do fail for systems described by large dimension-

less numbers or by two or more parameters of the
same dimension. For example, one can guess the
Bohr radius of a hydrogen atom, r0 = 4πε0ħ2/(e2me), by
combining the relevant constants of nature. But
atoms of high atomic number Z are more compli-
cated. To decide whether the radius is Zr0, r0/Z, or
some other function requires a knowledge of the
physics involved. Similarly, to see the relevance of the
Planck scale, cosmologists will need a good quantum
theory of spacetime. One candidate is loop quantum
gravity, which aims to promote classical relativistic
structures to the quantum level and has led to con-
crete and encouraging examples for understanding
the physical role of the Planck scales. One structure
of particular interest, the subject of the following sec-
tion, is called the hypersurface-deformation algebra;
it is the mathematical form that relates different or-
derings of perturbations to spatial surfaces.

Deform, wait, deform back
In the Minkowski space of special relativity, con-
stant-time surfaces as experienced by different iner-
tial observers are related by linear deformations. For
example, as illustrated in figure 1, the surface iden-
tified by a moving (boosted) observer as time t′ = 0
can be expressed as a deformation T(N) of the t = 0
surface of a stationary observer; the recipe is to dis-
place every point x on the stationary observer’s sur-
face by the appropriate distance N(x) in the normal
direction. If we boost to velocity v, wait for some
time Δt, and then apply the reverse boost, all objects
move a distance Δx = vΔt. Figure 2 gives a perhaps
surprising geometrical interpretation of that result.
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Figure 1. A Lorentz boost, which changes an 
observer’s velocity, implies a transformation of
constant-time spatial slices of spacetime. The
t′ = 0 surface of a boosted observer is related to
the t = 0 surface of the stationary observer by a
linear deformation T(N): Each point x on the t = 0
surface is shifted by a distance N(x) = vx/c along
the normal direction. Note that normal vectors
are drawn according to Minkowski geometry, 
parallel to the time axes, so a subsequent boost
would involve deformations in the direction 
indicated by the orange, dotted arrows.

Figure 2. An object shifts position if it is boosted
to velocity v, it moves around for a time Δt, and
then it is returned to its original stationary state.
These diagrams give a geometric representation
of that simple result for v ≪ c. The upper illustra-
tion shows the normal deformation N1(x) = vx/c
followed by a second normal deformation
N2(x) = cΔt − vx/c. In the bottom illustration, the
deformations are carried out in the reverse order.
In both cases, a constant-t surface is ultimately
transformed to a constant-t surface; the difference
between the two composite transformations gives
the shift Δx (blue arrows). Because all the slanted
red arrows in the figure make an angle of
tan−1(v/c) with the vertical, one can readily confirm
that Δx = vΔt, the correct law for inertial motion.



General relativity provides transformation
laws for nonlinear coordinate changes—in partic-
ular, nonlinear N(x)—which imply arbitrary defor-
mations of space. Relations, such as illustrated in
figure 3, between different deformations lead to
the  hypersurface- deformation algebra. Its most 
important part generalizes the geometric result de-
picted in  figure 2: Two time deformations T(N) per-
formed in opposite orderings differ by a spatial
displacement S(w),

T(N2)T(N1) − T(N1)T(N2) = S(N2∇N1 − N1∇N2). (1)

For the two linear functions N1 and N2 introduced
in  figure 2, equation 1 reduces to Δx = vΔt.

General relativity embeds the laws of motion into
a dynamical theory of spacetime whose quantum ef-
fects theorists hope to unravel. Symmetry often deter-
mines dynamics. So it is for spacetime: In 1958 Paul
Dirac, who derived  equation 1, showed that a theory in-
variant under all hypersurface deformations is gener-
ally covariant—that is, the physics of the theory is in-
sensitive to coordinate choice.1 In 1976 Sergio Hojman,
Karel Kuchař, and Claudio Teitelboim demonstrated
that a  second- order,  hypersurface- deformation-
invariant field equation for spacetime must be equiva-
lent to Einstein’s equation.2

Those were deep, landmark contributions to
canonical gravity, the description of the gravita-
tional field without recourse to a Lagrangian or ac-
tion. They also opened up a road toward under-
standing quantum spacetime. Energy generates
time translations—in quantum mechanics,
iħ∂ψ/∂t = Êψ (Ê is the Hamiltonian, or energy, oper-
ator). The key question for quantum gravity is how
quantized energies fit into a quantum version of
 equation 1. If that question can be answered, theo-
rists can hope to understand important aspects of
quantum spacetime and cosmology. But first we
need to understand the kinds of states acted on
when the expressions in  equation 1 are promoted to
quantum operators.

Atoms of space
In loop quantum gravity,3 spacetime appears dis-
crete or atomic, a property the theory shares with
other  quantum- gravity proposals, including non-
commutative geometries, spin-foam models, causal

dynamical triangulations, and some versions of
string theory.4 But loop quantum gravity gives spe-
cific prescriptions for promoting the hypersurface
deformations S and T to operators acting on wave-
functions. If the daunting task of computing the 
operator commutators can be performed, quantum
effects of spacetime can be derived. Such results are
still incomplete, even after about 20 years of re-
search, but they have begun to emerge.

Loop quantum gravity had its beginning in 1990.
Carlo Rovelli and Lee Smolin5 realized that technical
advantages for quantizing gravity resulted if one used
not the metric prominent in Einstein’s original formu-
lation of general relativity but different variables intro-
duced by Abhay Ashtekar in 1986.6 Those Ashtekar
variables resemble fields familiar from electromagnet-
ism, and so initial quantization steps could be mod-
eled on well-known techniques—for instance, from
lattice gauge theory. Soon enough, however, special
features of spacetime—importantly, the nonexistence
of an absolute time coordinate—required innovative
adaptations of known methods. Also, new math -
ematics had to be developed to deal with the counter-
intuitive wavefunctions that a quantum theory of
spacetime cannot avoid. Jerzy Lewandowski soon
started collaborating with Ashtekar and injected cru-
cial ideas into the growing field.

Ashtekar’s reformulation introduced three
pairs of  electromagnetic-type fields (Pi , Ai) labeled
by some index i. The Pi are somewhat like the elec-
tric field, but unlike those more familiar objects,
they are not force fields; rather, they are functions
that in lieu of a metric determine distances in space.
Called triads, they act much like variable coordinate
axes affixed to each point in space. The geometric
analogue of the vector potential, in three copies Ai,
measures the curvature of space.

To introduce quantum excitations, Rovelli and
Smolin built ladder operators from Ai, much like the
ladder operators â † and â so useful for finding solu-
tions of the harmonic oscillator. The new operators
raise the “excitation level” of geometry instead of
energy and thus affect distance measurements.
With them, Rovelli and Smolin introduced the phys-
ical notion of atoms of space.

What do those atoms look like? We certainly do
not have observations—the Planck length, expected
as their size, is just too tiny. What is more, even if
we could generate waves with arbitrarily short
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Figure 3. General relativity allows for nonlinear
coordinate changes, which correspond to arbitrary
deformations S(w) within spatial slices and 
arbitrary temporal deformations T(N), with functions
N determining the shift along the normal at every
point. The example shown here generalizes figure 2
and results in  equation 1.

Ladder operators in loop quantum gravity have a classical correspon-
dence in the magnetic flux computed from the vector potential A. The
magnetic flux is the line integral of A along some loop ℓ with tangent tℓ.
If we quantize the analogous gravity field A i and take the exponential of
the line integral, the result, called a holonomy ĥℓ, obeys the commutator
relation [P̂, ĥℓ] ∝ tℓĥℓ with a triad operator P̂, of the same form as is satisfied
by the energy and ladder operators for the harmonic oscillator.

The harmonic oscillator has raising operators â† that increase the
energy via â†∣n〉 ∝ ∣n + 1〉 and lowering operators â that satisfy
â∣n〉 ∝ ∣n − 1〉. Their role as ladder operators follows from commutators
with the energy operator Ê: [Ê, â†] = Êâ† − â†Ê = ħωâ†. If Ê∣n〉 = En∣n〉,
Ê(â†∣n〉) = (â†Ê + [Ê, â†])∣n〉 = (En + ħω)â†∣n〉.

In the same way, holonomies function as ladder operators that raise
the excitation level of P̂ and change distance measurements.

Box 1. Ladder operators



wavelengths, how would we use them to produce an
image? Any wave would have to move around and
scatter about the object it is supposed to show us. But
atoms of space build space. There is nothing between
them, no space for a scattering wave to travel through.
Direct images of atoms of space are impossible not
just for technological reasons but in principle. We will
have to content ourselves with indirect effects and for
now find recourse in a mathematical picture.

Ladders in space
The electromagnetic analogy of the geometrical
fields Pi and Ai suggests a flux-line picture for their
quantum excitations. In electrodynamics, the inte-
gral of the vector potential around a closed curve
gives a magnetic flux. Loop quantum gravity uses
the analogous integrals to provide a ladder operator
(see box 1) that raises the excitation level of geome-
try and allows for the construction of quantum
states describing space of increasing size.

Proceeding from an unexcited state ψ0, the
loopy ladder operators generate excitations along
flux lines ℓ. A graph-like structure called a spin net-
work can be used to represent the result. The graphs
and their flux lines have a geometric meaning: A
surface impaled by flux lines has area; the greater
the number and strength of flux lines that pierce the
surface, the greater the area.

Rovelli and Smolin arrived at a picture of spatial
atoms, not point-like or spherical but one-dimensional,
extended along loops: Space is a giant molecule woven
from threads, as schematically illustrated in figure 4. A
single ladder operator raises the geometric excitation
level—the atomic size of space—by a smallest, discrete,
Planckian unit. One can eliminate excitations using in-
verse operators. Their destructive work reduces the
size of space and eventually brings us back to ψ0, the
state of unexcited, emptiest space.

In the cosmos, space grows dynamically, without
the willful action of mathematicians applying ladder
operators. To describe those dynamics, a theory needs
to furnish a quantization of Einstein’s equation, some
 Schrödinger- equation analogue, but one that does not
assume an absolute time. We are brought back to hy-

persurface deformations, which tell us how to change
time and how spacetime evolves. 

General relativity is complicated enough, so
one cannot expect simple solutions for a quantum
version. Even formulating potentially suitable evo-
lution equations was difficult, but it is now possible
thanks mainly to work by Thomas Thiemann7 in
1996. What remains open is the question of whether
the quantum theory is consistent and covariant—
that is, whether it leads to a quantum version of hy-
persurface deformations that remains indifferent to
specific coordinate choice.

The discrete nature of space affords several
mathematical advantages but also includes dangers
regarding physical consequences. Meddling with
Lorentz symmetries should not be done lightly.8 The
radical deconstructivism inherent in a loopy ladder
that allows one to descend all the way down to emp-
tiest space and to climb back up harbors an immense
creative power—but whether loop theorists can tap
and control that force remains to be seen.

A hell of a state
A whole world rests on emptiest space, at least ac-
cording to loop quantum gravity. Quantum physics
of spacetime follows from the basic state ψ0 and the
ladder operators. If that basic state is wrongly chosen,
the whole theory must fall. It is important to charac-
terize and understand ψ0, for it is unlike all ground
or vacuum states physicists usually encounter. And
not all characterizations may sound benevolent.

As a mathematical analogue of ψ0, Klaus Fre-
denhagen proposed a state of infinite temperature,
in which all excitations are equally likely since there
is no lack of energy. The unexcited state of quantum
space resembles a matter state in which any energy
excitation can be reached, a result (elaborated on in
box 2) that illustrates the differences between quan-
tum matter and quantum space. Inspired by the
 infinite- temperature analogy, Fredenhagen dubbed
ψ0 the State of Hell.

Cosmologically, ψ0 is important because it sat-
isfies all requirements for a Big Bang state that
represents the universe at its densest moment: The
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Figure 4. Starting with emptiest space in its state ψ0, ladder operators
ĥi in loop quantum gravity generate geometry. (a) As illustrated in this
schematic, the geometry is atomic and  polymer-like, with complicated
meshes building space on small scales. Only on distances much larger
than the mesh spacing does general relativity’s curved continuum
emerge. (b) The spin network presented in this simulation is a more 
rigorous way to represent multiple applications of ladder operators. 
Different colors here represent different degrees of excitation.



temperature is infinite; there is no spatial exten-
sion in that emptiest space; and, based on a meas-
ure of entropy, ignorance is maximized. Ignorance
may be a virtue when it comes to hell, but a lack
of mathematical control over the State of Hell
would seem to preclude physical predictions.

Given the extreme scales of quantum gravity,
the only justifiable hope for probing the State of Hell
must rely on obtaining indirect evidence, a situation
not unlike that accompanying the 19th- century de-
bates about the reality of material atoms. It was 
Einstein’s analysis of Brownian motion in 1905, and
subsequent experiments by Jean Perrin, that con-
vinced the majority. Despite the molecules’ tiny size,
the sheer number of them colliding with suspended
larger objects in a liquid causes visible motion. Ob-
served and statistically analyzed, that motion pro-
vided quantitative evidence that was hard to reject
even if atoms could not be seen directly. A half cen-
tury later, impressive imaging techniques enabled
atomic resolution, first achieved by Erwin Müller
with field ion microscopy. But that accomplishment
was not needed to establish atoms for real.

Quantum gravity faces similar problems, albeit
on vastly different scales. Even to see indirect evi-
dence, observers will need enormous magnification.
 Quantum- gravity researchers set their hopes on the
largest microscope we have—the whole universe.
By its very expansion, it magnifies everything.
Many cosmic processes distort images, but with 
sophisticated techniques the images can still be
compared against spacetime theories to decipher in-
formation about microscopic structures.

To some extent, the situation confronting loop-
gravity theorists is similar to that faced by con-
densed-matter physicists—with spacetime atoms in-
stead of material ones. As with matter, it is extremely
difficult to do first- principles calculations that begin
with a many-body Hamiltonian and arrive at quan-
tum effects for macroscopic regions. Numerical 
simulations remain challenging but are now being
developed for spacetime atoms thanks to work by
Daniel Cartin, Gaurav Khanna, and others. Learning
from  condensed- matter physics, we gravity theorists
need to develop good schemes for effective theories
that offer approximate predictions for large-scale
phenomena and that perhaps will help us to discover
universal features insensitive to microscopic details.
Unlike  condensed- matter physics, however, quan-
tum gravity cannot count on many experiments.
Nevertheless, we are making progress, albeit slowly.

Deformed deformations
The structure of spacetime plays a foundational role
for processes unfolding in it. One entry point for test-
ing quantum gravity, therefore, is the form of hyper-
surface deformations. If we know how spacetime is
modified by quantum effects, it may be possible to see
some physics. It is not easy at all to modify the defor-
mation algebra, just as it is difficult to meddle with
Lorentz transformations; most attempts will simply
destroy any symmetries. But if transformations can be
preserved, albeit in a corrected form, they are good
candidates for revealing universal phenomena. 

Dimensional arguments suggest quantum ef-

fects would be of the order ρ/ρP, with ρ the average
density. In all currently accessible regimes, that ratio
is so tiny as to quench hopes for observational tests.
However, theories of discrete spacetime have an-
other option, thanks to a new scale: the discrete
spacing L, or the average size of spatial atoms. Di-
viding by the Planck length yields a second dimen-
sionless parameter, L/ℓP. The discrete spacing may
well be different from ℓP, in which case the new pa-
rameter would be significant. We “only” need to
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Figure 5. Observations of the cosmic microwave
background and other data limit the size of the
 inverse- volume correction δ = α − 1 (see equation 2).
This likelihood plot combines δ with a parameter ε
that distinguishes between various possibilities for
cosmic inflation. The lines bound regions in which δ
and ε must lie with a likelihood of 68% (red curve)
and 95% (blue curve). The upper bound here is
about four orders away from a theoretical limit
δ = 10−8 below which the discrete spacetime theory
used to generate the curves is no longer consistent.
As the cosmological data improve, the consistency
of discrete spacetime theories will come under ever
more rigorous observational scrutiny. (Figure by
Shinji Tsujikawa, Tokyo University of Science;
adapted from ref. 11.)

As described in box 1, holonomies as ladder operators are quantized 
exponentiated fluxes ∮dl · Ai. In the simplest case, for which the loop 
is small and the vector-potential analogue is slowly varying, the loop 
integration can be dropped and the ladder operator may be written
ĥ = exp(ilÂ), where l is the length of the loop. As with all ladder operators,
the ground-state expectation value 〈ψ0∣ĥkψ0〉 = 0 for k ≠ 0.

However, loopy ladder operators and the states they connect differ
from the  harmonic- oscillator ladders and states because the loopy 
ladder’s relation with the fields Âi and P̂i is different from the relation of
the harmonic-oscillator ladders with position and momentum: For
the harmonic oscillator, the ladders â† and â are linear in position and
momentum, not exponentiated operators as in the loopy case. To
compare the models, one can compute expectation values of exp(iklx̂),
obtained simply by replacing the gravitational Â field in the flux integral
with the position x̂. Then the ground-state expectation value for the har-
monic oscillator would not vanish for k ≠ 0, but rather would yield a
Gaussian function in k. No finitely excited state of the harmonic oscillator
or of particle physics can produce the loop result. Quantum field theory,
though, provides a state that can—the infinite-temperature state that 
inspired Klaus Fredenhagen to call ψ0 the State of Hell.

Box 2. State of Hell



evaluate our theory and see how L/ℓP enters into
quantum corrections. That’s a difficult task because
the existence of two dimensionless parameters ρ/ρP
and L/ℓP precludes the use of dimensional argu-
ments. But large-scale effects become possible, con-
ceptually similar to Brownian motion that made the
case for material atoms.

Loop quantum gravity gives rise to L/ℓP-
 dependent quantum effects called  inverse- volume
corrections. As shown in long, brave calculations by
Mikhail Kagan and Golam Hossain, equation 1 gets
modified to 

T(N2)T(N1) − T(N1)T(N2) = S[α(N2∇N1 − N1∇N2)]. (2)

Evidently, quantum effects contribute to the com-
mutator on the left-hand side of  equation 2 a factor
that is parameterized by α − 1, a result that has been
confirmed by independent means, most recently by
Adam Henderson, Alok Laddha, and Casey Tomlin.

For linear functions N as in figure 2, the relation
between displacements and velocities, one of
physics’s most elementary relationships, appears to
be modified. According to the construction in fig-
ure 2, v is the velocity of a boosted observer who
measures the motion of an object initially at rest.
After a time Δt, one would expect the object to have
moved a distance vΔt, but the result Δx = αvΔt is dif-
ferent—not much can be taken for granted if even
space and time are quantum. The modified relation
is not so surprising, though, if one thinks of space-
time as a  condensed- matter analogue: Discrete mat-
ter structures often change propagation speeds
compared with those in a structureless vacuum. In
quantum spacetime, even the matterless vacuum
has a structure that affects motion.

Propagation is important in cosmological theo-
ries of structure formation. When inhomogeneities
are small, structure formation is described in terms
of wave equations in an expanding cosmos. Nor-
mally, those waves propagate at the speed of light. 

In quantum spacetime, electromagnetic and
gravitational waves obey a wave equation with ve-
locity √‾αc > c, and so √‾αc defines the speed of light in

quantum spacetime. But, as de-
rived with crucial input by Gian-
luca Calcagni, energy-density per-
turbations propagate at a different
speed. The two different propaga-
tion speeds are a characteristic sig-
nature of quantum spacetime. 

With additional observational
data, particularly on cosmic gravi-
tational waves, it may be possible
to test loop quantum gravity along
the lines indicated in figure 5. In
any case, the theory does not make
it easy to evade mounting observa-
tional pressure.

Back to the beginning
What happened deep within the
high density of the Big Bang, a sin-
gular moment in general relativ-
ity? Was it the beginning of the

universe or some transition phase? The simplest
nonsingular scenarios are bounce models, which
involve alternating epochs of collapse and expan-
sion.9 However, general relativity can realize such
schemes only with rather contrived forms of matter.
And in quantum gravity, high densities remain
poorly controlled. Only partial, though fascinating,
indications exist at present.

Loop quantum cosmology,10 the application of
loop quantum gravity to cosmology, eliminates the
classical singularity; it describes the universe by a
wavefunction that extends uniquely to times “be-
fore” the Big Bang. A well-knit plot has neither an
accidental beginning nor an accidental end, accord-
ing to Aristotle’s Poetics. Loops knit the spacetime
story well, without the accident of a singularity.

“Before” here is in quotes because the notion of
time in quantum spacetime may not agree with our
intuitive temporal sense. Irrespective of what time
means, however, its atomic nature implies that
wavefunctions obey not differential equations but
difference equations that discretely step over emp-
tiest space. A valuable lesson: If we are discrete
enough, we can avoid the State of Hell.

The equations of loop quantum cosmology
specify what happened at and “before” the Big Bang,
but many unknowns remain. Detailed information
comes only from models that, like the quantum 
harmonic oscillator, can easily be solved but are too
simple for general conclusions. Still, potential effects
can be suggested, as shown by Leonardo Modesto,
Jorge Pullin, Parampreet Singh, and others.

Bounces seem possible; figure 6 shows a sam-
ple calculation. But a bounce is a temporal scenario
and requires good knowledge of the nature of time.

Out of time
At near-Planckian densities, hypersurface deforma-
tions are modified so dramatically that the quantum
correction α is negative, as pointed out by Juan
Reyes, Thomas Cailleteau, Jakub Mielczarek, 
Aurélien Barrau, and Julien Grain. Cosmological ex-
citations are no longer subject to wave equations:
Space and time derivatives enter with the same sign
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Figure 6. A simple quantum-cosmology model shows how the wavefunction for the volume
of space changes as a function of time and replaces the classical Big Bang singularity (left)
with a bounce (right). The bounce shown here, obtained analytically, had first been seen 
numerically12 before theorists realized that the simplifications used in the model of reference 12
were very restrictive and allowed for an analytic solution. The vertical direction indicates 
volume, with zero at the bottom; the horizontal direction specifies time. Colors represent
the magnitude of the wavefunction, with yellow indicating the greatest magnitude.



and appear in elliptic rather than hyperbolic partial
differential equations.

For the special case of linear N, as in figure 2,
α < 0 in  equation 2 seems to say that an object forced
to move with positive velocity experiences a nega-
tive displacement. Such intransigent behavior can
more meaningfully be interpreted as a change of
signature. When α turns negative, we no longer
have spacetime. Instead, we have a quantum ver-
sion of 4D space with no timelike direction. 

A dense universe runs out of time. Bounces such
as the one shown in figure 6 are not realized in a tem-
poral sense. For the eras of collapse and expansion
during which the universe is not so dense, α is posi-
tive and spacetime exists; the spacetimes of those
epochs can be extended across the timeless Big Bang.
But the collapse and expansion eras are not causally
connected, and in particular, not all information can
be transmitted between them. (How much can be
conveyed is an active research question.) The trans-
mutation from 4D space to spacetime, at a density for
which α runs through zero, marks the beginning of
our cosmic era: a meaningful moment, nonsingular
and yet unprecedented.

Loop quantum gravity suggests that the universe
does not begin with a big bang, nor does it follow
cyclic behavior with causally connected periods of
collapse and expansion. Instead, the theory offers a
mixture of cyclic and monotonic worldviews, with a
pre- history before the Big Bang but also forgetfulness
that grants a clean slate afterwards. One can avoid
dangerous entropy growth, a problem of cyclic mod-
els identified by Richard Tolman as early as the 1930s.

Those features have been derived, not postulated. But
before we can consider them reliable, the theory itself
must be completed and empirically tested. We are not
able to observe the high- density phase directly, but by
delicate trickle-down effects in accessible background
radiation, the theory, and by extension its strange con-
sequences, can be falsified.
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