
T
he electron is amazing. The particle whose orbits give
size to atoms may actually have no size. We only
know that its radius must be less than 2 × 10−20 meters
to explain why more high-speed positrons do not
bounce backward when they collide with electrons.

The “spin-½” electron has angular momentum S = ½ħŜ, as
Otto Stern and Walther Gerlach famously demonstrated,
even though it has no size and nothing is rotating. 

The electron, though, does have the magnetism that we
might expect if charge displaced from the electron’s center
rotates to make current loops. Insofar as the electron has a
simple internal structure, that magnetic moment μ is parallel
to its spin: μ = μŜ. To measure μ, a single electron is sus-
pended for months at a time in a strong magnetic field B. A
weak electric field (henceforth to be ignored, since it adds no
fundamental complication) keeps the electron from leaving
the measurement apparatus—the Penning trap shown in
panel a of the figure.

The electron orients its magnetic moment with B, much
as a magnetized compass needle orients in Earth’s magnetic
field. A compass needle pointed exactly south will stay in that
unstable equilibrium state only until a tiny disturbance flips
it to the lower-energy, stable equilibrium state pointed north.
Energy is not so easily removed from the single-electron
magnet. Left to itself in the Penning trap, it would remain 
either parallel or antiparallel to B for years; the two states 
differ in energy by ħωs = −2μB, where ωs is the so-called spin
frequency. The spin and magnetic moment flip direction 
only when an appropriate oscillating driving force is applied,
with more spin flips taking place as the drive frequency 
approaches ωs.

The spin frequency is proportional to B, which must then
be measured to extract μ. Fortunately, the cyclotron fre-
quency, ωc = eB/m for an electron with charge −e and mass m,
is also proportional to B, so it can be used as an internal mag-
netometer. The electron is kept cold—with a temperature less
than 0.1 degree above absolute zero—to keep the cyclotron
motion in its quantum ground state. As with spin flips, a
measurable one-quantum excitation of the cyclotron motion,
which increases the energy by ħωc, requires an appropriate
driving force. Excitations take place more frequently as the
drive frequency approaches ωc.

Eliminating B from ħωs = −2μB and ωc = eB/m gives the
magnetic moment as a ratio of the two measurable fre -
quencies, μ/μB = −ωs/ωc. The Bohr magneton μB = eħ/(2m) 
is the magnetic moment for circular electron motion with
 angular momentum ħ. The magnetic moment μ is negative—

that is, μ is antiparallel to the spin—because the electron
charge is negative. In terms of the famous electron g value,
μ/μB = −g/2.

Other critical experimental methods can only be men-
tioned, given space constraints. Using only the lowest cy-
clotron states eliminates the necessity to make a relativistic
correction that depends on velocity. We obtain the fraction 
of a second needed to observe a one-quantum cyclotron 
excitation by using a cylindrical trap cavity that inhibits the
spontaneous emission that otherwise would radiate away the
energy of the excited state before it could be observed. So-called
quantum nondemolition detection keeps repeated observa-
tions of the lowest quantum states from causing transitions.

The resulting electron magnetic moment, μ/μB =
−1.001 159 652 180 73 (28), is the most precisely measured
property of any elementary particle. The uncertainty, in
parentheses for the rightmost two digits, is only 2.8 parts in
1013. For comparison, the muon magnetic moment has been
measured only about 1/2500 as precisely.

The standard-model calculation
In 1928 Paul Dirac introduced the famous relativistic wave
equation that describes an electron and other spin-½ parti-
cles. The Dirac equation prediction, μ/μB = −1, is the first and
largest of four standard-model contributions that together
may be written −μ/μB = 1 + aQED + ahadronic + aweak.

A 0.1% addition to the moment, aQED, comes from quan-
tum electrodynamics (QED), a quantum field theory incor-
porated into the standard model. QED describes how the
electron emits and absorbs photons, some of which interact
with the lepton–antilepton pairs of “empty space.” The stan-
dard model’s leptons—the electron, muon, and tauon—are
identical point particles except for their differing masses.
Each has an oppositely charged antiparticle with the same
mass. Because lepton–antilepton pair creation violates en-
ergy conservation, the pairs annihilate within the short time
allowed by the energy–time uncertainty principle.

A two parts per trillion contribution, ahadronic, comes from
the electron’s interaction with hadron–antihadron pairs.
(Hadrons are heavy particles whose internal structure would
need to be known here if the correction weren’t so small.) The 
standard-model weak-interaction contribution to the electron
moment, aweak, is smaller than the measurement precision.

Quantum electrodynamics gives aQED as a power series
in the fine-structure constant, α ≡ e2/(4πε0ħc) ≈ 1/137, which is
a measure of the strength of the electromagnetic interaction
in the low-energy limit. Specifically, 

Each of the five displayed terms is much smaller than the pre-
vious one, but all are needed to achieve the measurement
precision of the magnetic moment.
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The standard model’s 
greatest triumph
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The standard model predicts the electron
magnetic moment to an astonishing
accuracy of one part in a trillion.
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The Ck are calculated by evaluating Feynman diagrams,
each giving a prescription for an integral. The 1, 7, and 72
Feynman diagrams that contribute to C2, C4, and C6 have been
evaluated analytically. Julian Schwinger calculated C2 in
1948. Charles Sommerfield and André Petermann indepen -
dently determined C4 in 1957. Stefano Laporta and Ettore
Remiddi finished their remarkable evaluation of C6 in 1996.
Toichiro Kinoshita, Makiko Nio, and collaborators numeri-
cally evaluated the daunting 891 and 12 672 Feynman dia-
grams (panel b of the figure gives examples) needed for C8
and C10—the result for C10 was reported only in 2012.

Folding in a fundamental constant
The fine-structure constant is ubiquitous throughout physics.
I’ve already noted its connection to the electromagnetic inter-
action. In atomic physics, the binding energy, fine-structure
splitting, and Lamb shift are all proportional to powers of α.
In condensed-matter physics, α characterizes Josephson junc-
tion oscillations and quantum Hall resistance steps. In addi-
tion, α is an important component of our system of funda-
mental constants. 

The fine-structure constant must be measured, since it is
defined with parameters of the standard model that cannot
be calculated. Thus a standard-model prediction of μ/μB re-
quires an empirically determined α as input. Several meas-
urements together determine α via α2 = 4πR∞ħ/(mc), obtained
by substituting the Rydberg constant R∞ (precisely measured
by Theodor Hänsch and collaborators using hydrogen laser
spectroscopy) into the definition for α. In 2011 François
Biraben precisely determined ħ/M for rubidium. The Rb mass
M had earlier been related to the electron mass m in meas-
urements by Ed Myers and by Wolfgang Quint, Klaus Blaum,
and collaborators.

In Biraben’s experiment, Rb atoms initially at rest were
each given N = 500 momentum kicks of ħ(k1 + k2) ≡ 2ħk from
counterpropagating lasers with precisely measured wave -
vectors of magnitude k1 and k2. The internal energy of each
atom remained unchanged insofar as one photon was ab-
sorbed while the other stimulated the emission of a photon.
(Panel c of the figure shows the fluorescing Rb.) The speed
change of the atom, 2Nħk/M, was measured from the Doppler
shift of an absorption line to determine ħ/M. The result,
1/α = 137.035 999 049 (90), is consistent with the more precise
value that can be obtained from using the measured μ and
the standard-model calculation to determine α.

The standard model, with the experimentally deter-
mined α as input, predicts an electron magnetic moment,
μ/μB = −1.001 159 652 181 78 (77). Owing to the uncertainty in
α, the prediction is 2.8 times less precise than the measure-
ment. A comparison of that prediction to the single-electron
measurement is the most precise confrontation of any theory
and experiment. They agree to 1.1 ± 0.8 parts per trillion—to
within 1.3 standard deviations.

A theory of much, but not everything
The standard model is the great success and the great frus-
tration of modern physics. Not only does it predict the elec-
tron magnetic moment to a part per trillion, it also success-
fully incorporates into its patchwork everything measured
for the fundamental particles that make up the known matter
in the universe, along with what is known about the weak,
electromagnetic, and strong forces by which those particles
interact. The frustration is that the standard model seems too
incomplete to be the final word. It also includes more param-
eters than physicists would like. Gravity does not fit com-
pletely. And the standard model offers no explanation for the
dark matter and dark energy that seem to make up most of
the universe, nor for how a matter universe could result from
the nearly symmetric creation of matter and antimatter in the
Big Bang.

Even as we celebrate the great triumph of the standard
model, some of us are attempting to use new apparatus and
methods to more precisely test the standard-model pre -
diction. Likely we have more to learn from the amazing 
electron.
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Unprecedented confrontation of theory and
experiment. (a) Our Penning trap shown here
suspended a single electron for the months it
took to measure its magnetic moment μ—the

most precisely measured property of an elementary particle. (b) The magnetic moment is also the
quantity most precisely predicted by the standard model of particle physics. The prediction requires
the calculation of nearly 14 000 integrals. These Feynman diagrams represent three of those. 
(c) Fluorescing rubidium atoms are used to measure the fine-structure constant α, which gives the
strength of the electromagnetic interaction. The measured α and the standard-model calculation are
the essential inputs for the precise prediction. (d) The predicted and measured values of μ agree to an
astounding part per trillion. Both values shown here are divided by the Bohr magneton μB defined in
the text. Parentheses denote uncertainties in the rightmost two digits.

Measured: μ μ/ = −1.001 159 652 180 73 (28)
B

Predicted: μ μ/ = −1.001 159 652 181 78 (77)
B
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