
O
ne morning I (Vonk) happened across a local
news story about a water-driven jetpack and
was immediately intrigued. The motion pro-
vided by the craft is intuitive and organic in a
way that closely resembles the unencumbered

flight that many of us dreamt about as kids. If you haven’t al-
ready seen a jetpack in action, you can check out how they
work at http://www.youtube.com/watch?v=Cd6C1vIyQ3w.

And yet the technology isn’t new. The jetpacks are pow-
ered via a fire hose that is easily attached to the output jet of
a personal watercraft. When the water in the hose reaches the
flying platform, it is split into two large thrusters, one below
each foot, and two smaller handheld stabilizers.

I had a chance to see the evocative craft in person one gor-
geous late-summer afternoon when local jetpack phenom
Caleb Gavic was flying above the Mississippi River near down-
town Minneapolis. Watching Gavic, I was simultaneously
struck by a number of unrelated reactions. The five-year-old in
me was enthralled by the coolness of his movements, some of
which are caught in the figure. The fearless adolescent in me
wanted to jump on and give it a try. But strongest of all was the
geeky physics-teacher compulsion to puzzle out the physical
principles that permitted his gravity-defying flight.

A first pass at the mechanics
For simplicity, I started with a one-dimensional approxima-
tion. When Gavic is stationary, hovering above the river’s 
surface, the force exerted by the expelled water must be
enough to support the weight of the pilot and the platform,
which in his case is 910 N. Since F = dp/dt, the supported
weight must be equal to the change in momentum per unit
time of the water at the platform. In the steady state, the flow
rate of the water in the hose is constant, so dp/dt is the product
of the mass of water that approaches the platform per unit
time, dm/dt, and the change in the velocity of the water:

(1)

where vi and vf are the initial (in the hose) and final (expelled)
water velocities.

In terms of measurable quantities, the mass change

dm/dt can be expressed as dm/dt = ρ vf (2AT + 2AS), where ρ is
the mass density of water, AT is the cross-sectional area of
each of the thrusting nozzles, and AS is the area of each of the
two handheld stabilizing nozzles. Notice that the final speed
of the water will be greater than the initial speed, because the
nozzles have a smaller total cross-sectional area than the fire
hose. Neglecting the water that spills out around the plat-
form’s ball bearings, the volume of water that approaches the
platform in a given time must be the same as the volume of
water that leaves the nozzles, so

(2)

Here AH is the cross-sectional area of the fire hose, and the
minus sign arises because the final and initial velocities are
oppositely directed. Combining the results obtained so far
yields for the force

(3)

Plugging in the known values F = 910 N, ρ = 1000 kg/m3,
AT = 2.3 × 10−3 m2, AS = 2.9 × 10−4 m2, and AH = 8.1 × 10−3 m2

allows one to solve for the minimum value of vf, which turns
out to be a bit over 10 m/s, about 23 mph.

The tension mounts
Peter Bohacek and I were curious to test my 10 m/s answer
experimentally, so we took a high-speed video of Gavic hov-
ering above the water. That video, along with a standard-
speed video of the board in motion, is available in the 
Science Education Resource Center’s “Pedagogy in Action”
video library at http://serc.carleton.edu/sp/library/direct_
measurement_video/video_library.html.

The knots of water ejected by the nozzles in the high-
speed video take about 16 frames to travel 1 m. At 240 frames
per second, that corresponds to a speed of 15 m/s. (We estimate
the error in the speed determination to be ±1 m/s.) Such a speed
seems reasonable for the output of a personal watercraft, if we
keep in mind that the machine is not operating at full throttle.
Although our measured value is in the same ballpark as the
theoretical prediction, it’s not as close as we would have liked.
We were particularly disappointed because impulse is propor-
tional to the velocity squared; higher water speed in the hose
increases both the mass of water hitting the platform each sec-
ond and the momentum transferred by each unit mass. In fact,
plugging 15 m/s into equation 3 yields a total force of 1900 N—
much higher than the actual weight of 910 N.

The velocity I calculated in the previous section, how-
ever, was the minimum value needed to support the weight
of Gavic and the platform. In addition to gravity, the hose
also pulls down on the craft with a force at least equal to the
weight of the hose and its liquid contents. Indeed, the up-
ward thrust of the jets can exceed the minimum needed for
support, even taking the hose into account; in that case, the
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craft will accelerate upward until additional tension in the
hose stops it. Although at first, quantifying the tension may
seem impossible, a closer look at the hovering vehicle from
the side offers a tantalizing clue.

As shown in panel d of the figure, the main thrusters and
the fire hose tend to angle backward when the jetpack is 
hovering. To hold the pilot in one position, the horizontal
component of the tension T in the fire hose must be equal and
opposite to the horizontal component of force produced by
the redirected water. Equating the magnitudes of those force
components leads to

(4)

where θT is the angle the thrusters make with the vertical 
(in this case about 25°) and θH is the angle the hose makes
with the vertical (in this case about 45°). Solving for the tension
yields a value of 1660 N.

Armed with the tension and angles involved, we now
calculate the payload that the jetpack should be able to lift.
In the steady-state case, the upward force provided by the
water in the hose (in expression 5a to follow), the thrusters
(5b), and the stabilizers (5c) should equal the downward
component of the tension in the hose plus the weight W of
the platform and pilot (5d):

(5a)

(5b)

(5c)

(5d)

Treating W as an unknown, using equation 2 to obtain
v i in terms of vf, and plugging the known values of all the 
remaining variables into equation 5 yields W = 770 N. Con-
sidering the difficulty of accurately measuring the various
velocities and angles of Gavic’s mercurial craft, we’re
pleased to be within about 15% of the actual weight of 910 N.
That’s especially true considering that all the terms in equa-
tion 5 except for W depend on velocity squared. 

Flying high
Although we didn’t get high-speed footage of Gavic hover-
ing really high above the Mississippi, as in panel c of the 
figure, we were curious about what water-jet speeds would
be required to support such extravagant flight. At the instant
the picture was taken, Gavic’s feet are about 10 m above the
water. At that height, the mass of the hose and the water in it
is 110 kg. The hose is hanging almost straight down, so the
minimum tension in it is the weight of hose and water, 1100 N.
The thrusters are also very close to vertical in panel c. Thus
we can set θH and θT equal to zero in equation 5 and solve
for the minimal v f given the known weight of Gavic and the
jetpack; the result is 15.4 m/s. But it’s likely that the hose has
an additional tension. To see how that additional force 
affects the final velocity, we set T = 1660 N (as before) and
recalculated vf = 17.4 m/s = 39 mph. We’re anxious to take
another high-speed video to see how close we got, but given
that it’s winter in Minnesota, I think we’ll have to wait a
while to entice Gavic back into the water.

Now that I’ve worked through some jetpack physics, the
five-year-old in me still gets a kick out of watching the craft
fly around, and the juvenile in me still wants to risk my neck
trying it. But the physicist in me is leaning back in his chair
with his feet up, feeling satisfied and content. ■
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Gliding and hovering with water jetpacks. (a) Jetpack expert Caleb Gavic pilots the flying craft (schematically drawn in the center
of the figure) over the Mississippi River near downtown Minneapolis. A main thruster and a handheld stabilizer are visible in the
foreground; the red hose through which water enters the craft is barely visible toward the back. Some of the water leaks at the ball
bearings where entrance and exit ports are connected to the jetpack platform. (b) Gavic lowers himself while turning gently to his
left and (c) hovers 10 m above the river. (d) This hovering pose, not as high as in panel c, is analyzed in detail in the text.
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