
O
ver the past quarter
century, sophisticated
statistical techniques
have been playing an
increasing role in the

analysis of particle-physics experi-
ments. For one thing, the experiments have become
much more elaborate and difficult, typically pro-
ducing enormous volumes of data in search of very
small effects.

In the decades after World War II, discoveries
of new particles—for example, many of the early
strange-quark-bearing mesons and hyperons—
were often based on one or a few bubble chamber
photographs. In the oft-told case of the J/ψ meson,
the first known particle harboring charmed quarks,
the cross section for its formation in an electron–
positron collider rose so dramatically at the reso-
nant energy that the discovery was clear within
hours of the first hint of a signal.

Such discoveries were deemed obvious; there
was no need to calculate the probability that statis-
tical fluctuations had produced a spurious effect.
Contrast that with today’s search for the Higgs
boson, the only remaining undiscovered fundamen-
tal particle required by particle theory’s standard
model (see PHYSICS TODAY, February 2012, page 16).
Because the Higgs search involves a signal-to-back-
ground ratio of order 10−10, sophisticated multivari-
ate techniques such as artificial neural networks 
are needed for finding needle candidates in the

haystack
of impostors. And when

a possible signal does appear, as-
sessing its statistical significance nowadays requires
great care.
Gargantuan instruments
The standard model, which took shape in the late
1970s, does not predict a specific mass MH for the
Higgs, but it does predict, as functions of MH, all of
its couplings to other particles and therefore its pro-
duction and decay rates. So non-observations of an-
ticipated decay modes are used to disfavor the ex-
istence of the standard-model Higgs in various MH
ranges.

The Higgs searches, as well as searches for ob-
scure manifestations of new physics beyond the
spectacularly successful but manifestly incomplete
standard model, are usually performed at large par-
ticle accelerators such as the Large Hadron Collider
at CERN, shown in figure 1. In the LHC, collisions
between beams of multi-TeV protons produce enor-
mous debris showers in which experimenters seek
evidence of new particle species and new properties
of particles already known.
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Ironically, the very success of the standard
model means that statistically robust manifestations
of really new physics beyond its purview have thus
far eluded experimenters—though there have been
tantalizing false alarms. Many experiments now
employ “blind analyses,” lest some desired out-
come subconsciously bias the choice of criteria by
which data are accepted or discarded. 

The detectors that surround the beam-crossing
points and record collision products are gargantuan
and intricately multifaceted. The ATLAS detector at
the LHC, for example, is as big as a seven-story
building, and it incorporates 108 channels of elec-
tronics. Nowadays, large experimental collabora-
tions with thousands of members from scores of in-
stitutions establish committees of experts to advise
on statistical issues. Their websites provide useful
tutorial articles on such matters, as do the proceed-
ings of the PHYSTAT series of conferences and
workshops.1

Statistical precision improves with running
time only like its square root, and running time at
the big accelerators and detectors is costly. There-
fore, it’s particularly worthwhile to invest effort in
developing statistical techniques that optimize the
accuracy with which a physics parameter is deter-
mined from data taken during a given running
time. 

More and more searches for hypothesized new
phenomena don’t actually find them but rather set
upper limits on their strength. It has become clear
that different methods of setting such upper limits
can yield different valid answers. In that regard, the
difference between the so-called Bayesian and fre-
quentist approaches is now better appreciated. An-
other statistical issue nowadays is combining meas-
urements of the same quantity in different

experiments, where possible correlations between
the different measurements need to be taken into ac-
count. And some analyses seek to determine the pa-
rameters of a putative theory such as supersymme-
try from many different measurements. 

Although the issues and techniques discussed
in this article have been developed largely for analy-
ses of particle-physics data, many are also applica-
ble elsewhere. For example, it’s possible to look for
low-grade biological attacks by terrorists in data on
the number of people checking in each day at hos-
pitals across the country. Finding a statistically
significant enhancement of patients in a specific
spacetime region requires statistical tools similar to
those with which one seeks the Higgs as an en-
hancement in the number of interactions in the
space of MH and other relevant variables. 

Bayesians versus frequentists 
There are two fundamental but very different ap-
proaches to statistical analysis: the Bayesian and fre-
quentist techniques. The former is named after the
18th-century English theologian and mathematician
Thomas Bayes (see the book review on page 54 of
this issue). The two approaches differ in their inter-
pretation of “probability.” For a frequentist, proba-
bility is defined in terms of the outcomes for a large
number of essentially identical trials. Thus the prob-
ability of some particular number coming up in a
throw of dice could be estimated from the fraction
of times it actually happens in many throws.

The need for many trials, however, means that
frequentist probability doesn’t exist for one-off sit-
uations. For example, one can’t speak of the fre-
quentist probability that the first team of astronauts
to Mars will return safely to Earth. Similarly, a state-
ment like “dark matter, at present, constitutes less
than 25% of the cosmic mass–energy budget” can-
not be assigned a frequentist probability. It’s either
true or false. 

Bayesians claim that the frequentist view of
probability is too narrow. Probability, they say,
should be thought of as a measure of presupposi-
tion, which can vary from person to person. Thus
the probability a Bayesian would assign to whether
it rained yesterday in Eilat would depend on
whether he knew Eilat’s location and seasonal rain-
fall pattern, and whether he had communicated
with anyone there yesterday or today. A frequentist,
on the other hand, would refuse to assign any prob-
ability to the correctness of such a statement about
a past event.

Despite that very personal definition, it is pos-
sible to determine numerical values for Bayesian
probabilities. To do that, one invokes the concept of
a fair bet. A Bayesian asserting that the chance of
something being the case is 20% is, in essence, pre-
pared to offer 4 to 1 odds either way.

Conditional probability P(A∣B) is the probabil-
ity of A, given the fact that B has happened or is the
case. For example, the probability of obtaining a 4
on a throw of a die is 1/6; but if we accept only even
results, the conditional probability for a 4 becomes
1/3. One shouldn’t wrongly equate P(A∣B) with
P(B∣A). The probability of being pregnant, assum-
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Figure 1. The CERN laboratory straddles the Swiss–French border
near Lake Geneva. The 27-km-circumference red circle traces the un-
derground tunnel of the lab’s Large Hadron Collider. Mont Blanc, the
highest peak in the Alps, appears on the horizon.
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ing you are female, is much smaller than the prob-
ability of being female, assuming you are pregnant.
Similarly, if the probability of obtaining the ob-
served data set under the assumption that the
Higgs boson does not exist in a certain mass range
is only 1%, it is incorrect to deduce from those data
that the probability that there is no Higgs in that
mass range is only 1%. 

Given two correlated circumstances A and B,
the probability that both happen or are true is given
in terms of the conditional probabilities by 

       P(A and B) = P(A∣B) × P(B) = P(B∣A) × P(A), 

which can be rewritten as 

                     P(A∣B) = P(B∣A) × P(A)/P(B).               (1) 

Equation 1 is known as Bayes’s theorem. (See the
Quick Study by Glen Cowan in PHYSICS TODAY,
April 2007, page 82.) For example, if you consider a
random day in the past few years, Bayes’s theorem
would relate the probability that the day was rainy,
given the fact that it was, say, December 25th, to the
probability that the day was December 25th, given
the fact that it was rainy. They’re not the same.

Estimating parameters
Bayesians and frequentists differ in how they esti-
mate parameter values from data, and in what they
mean by their characterization of an estimate. For
concreteness, consider a simple counting experi-
ment to determine the flux μ of cosmic rays passing
through a detector. In one hour it records n events.

Though most experimenters would then esti-
mate μ as n per hour, they could differ on the range
of μ values that are acceptable. Usually one aims to
find a μ range that corresponds to a specified
“confidence level”—for example 68%, the fraction
of the area under a Gaussian curve within one stan-
dard deviation of its peak. The individual cosmic
rays are believed to appear at random and inde-
pendently of each other and therefore follow a Pois-
son distribution. That is, the probability of finding
n events if, on average, you expect μ is 

                             Pμ(n) = e−μ × μn/n! .                        (2) 

Frequentists don’t dispute Bayes’s theorem. But
they insist that its constituent probabilities be gen-
uine frequentist probabilities. So Bayesians and fre-
quentists differ fundamentally when probabilities
are assigned to parameter values.

The frequentist method is to define a
confidence band in the (μ,n) plane such that for
every possible value of μ, the band contains those
values of n that are “likely” in the sense that the
Poisson probabilities Pμ(n) add up to at least 68%.
Then the observed number nobs is used to find the
range of μ values for which nobs is within the 68%
probability band. The recipe is embodied in the
Neyman construction shown in figure 2, named
after mathematician Jerzy Neyman (1894–1981).

One is thus making a statement about the range
of values for which nobs was likely. For values of μ
outside that range, nobs would have been too small
or too large to be typical.

The Bayesian approach is quite different. In

equation 1, Bayesians replace outcomes A and B, re-
spectively, by “parameter value” and “observed
data.” So Bayes’s theorem then gives

        P(param|data) ∝ P(data|param) × P(param),    (3) 

where P(param) is called the Bayesian prior. It’s a
probability density that quantifies what was be-
lieved about the parameter’s value before the cur-
rent measurement. The so-called likelihood func-
tion P(data|param) is, in fact, simply the probability
of seeing the observed data if a specific parameter
value is the true one.

The P(param|data), called the Bayesian poste-
rior, can be thought of as an update of the Bayesian
prior after the new measurement. It can then be
used to extract a new median value of the parame-
ter, a 68%-confidence central interval, a 90%-
confidence upper limit, or whatever. 

A big issue in Bayesian analysis is what func-
tional form to use for the prior, especially in situa-
tions where little is known in advance about the pa-
rameter being sought. Take, for example, the mass Ml
of the lightest neutrino. The argument that the prior
function should simply be a constant so as not to
favor any particular range of values is flawed. That’s
because it’s not at all obvious whether one should as-
sume a constant prior probability density in Ml or, for
example, in Ml

2 or ln Ml. For a given experimental re-
sult, all those options yield different conclusions.

The Bayesian priors may be straightforward for
parameterizing real prior knowledge, but they are
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Figure 2. Setting a confidence range for a physics parameter μ by
means of a Neyman construction. For any putative value of μ, one pre-
sumes to know the probability density Pμ(x) for obtaining a measured
experimental result x. For each μ, the pink-shaded confidence band indi-
cates a range in x that encloses, say, 68% of the probability (the red line).
Then, from a particular measurement result x’, the 68% confidence inter-
val from μL to μU (lower to upper, the blue line) gives the range of μ for
which the measured x’ is deemed probable. An x’ smaller than the one
shown here might yield only an upper limit or perhaps even no plausi-
ble μ value at all.



problematic for dealing with prior ignorance. There-
fore, if you do Bayesian analysis, it’s important to per-
form a test of its sensitivity—the extent to which dif-
ferent choices of priors affect the final result.2

Interpreting parameter ranges
Both Bayesian and frequentist analyses typically
end with statements of the form 

                                    μL ≤ μ ≤ μU                                (4)

at 68% confidence level. And indeed, in some simple
problems, the numerical values of the lower and
upper limits μL and μU can agree for the two meth-
ods. But they mean different things. The frequen-
tists assert that μ is a physics parameter with a fixed
but unknown value about which no direct probabil-
ity statement can be made. For them, equation 4 is
a statement about the interval μL to μU. Their claim
is that if the measurement were to be repeated many
times, statistical fluctuations would vary that range
from measurement to measurement. But 68% of
those quoted ranges should contain the true μ. The
actual fraction of ranges that contain the true μ is
called the statistical method’s coverage C.

By contrast, Bayesians say that μL and μU have
been determined by the measurement without re-
gard to what would happen in hypothetical repeti-
tions. They regard equation 4 as a statement of what
fraction of the posterior probability distribution lies
within that range. 

One shouldn’t think of either viewpoint as bet-
ter than the other. Current LHC analyses employ
both. It is true that particle physicists tend to favor
frequentist methods more than most other scientists
do. But they often employ Bayesian methods for
dealing with nuisance parameters associated with
systematic uncertainties.

Maximum likelihood
A very useful approach for determining parameters
or comparing different theories to measurements is
known as the likelihood method. In the Poisson
counting example, the probability for observing n
counts in a unit of time, when μ is the expected rate,
is given by the Poisson distribution Pμ(n) of equation
2. It’s a function of the discrete observable n for a
given Poisson mean μ. The likelihood function

                        Ln(μ) ≡ Pμ(n) = e−μ × μn/n!                    (5) 

simply reverses those roles. It’s the same Poisson
distribution, but now regarded as a function of the
sought physics result μ, with n fixed at the observed
measurement. The best estimate of μ is then the
value that maximizes Ln(μ). When there are several
independent observations ni, the overall likelihood
function L(μ) is the product of the individual likeli-
hood functions. 

An attractive feature of the likelihood method
is that it can use individual data observations with-
out first having to bin them in a histogram. That
makes the unbinned likelihood approach a power-
ful method for analyzing sparse data samples. 

The best estimate μmax is the value for which the
probability of finding the observed data set would
be greatest. Conversely, values of μ for which that
probability is very small are excluded. The range of
acceptable values for μ is related to the width of the
likelihood function. Usually, the range is defined by 

                 ln L(μL) = ln L(μU) = ln(Lmax) − 1⁄2.             (6)

When the likelihood function is a Gaussian centered
at μmax with standard deviation σ, that prescription
yields the conventional range μmax ± σ. 

Two important features of likelihoods are com-
monly misunderstood: 
‣ The likelihood method does not automatically
satisfy the coverage requirement that 68% of all in-
tervals derived via equation 6 contain the true value
of the parameter. The complexity of the situation is
illustrated in figure 3, which shows the actual cov-
erage C as a function of μ for the Poisson counting
experiment.3 For small μ, the deviation of C from a
constant 68% is dramatic. 
‣ For parameter determination, one maximizes L
as a function of the parameter being sought, using
the fixed data set. So it’s often thought that the larger
Lmax is, the better is the agreement between theory
and data. That’s not so; Lmax is not a measure of
goodness-of-fit. A simple example makes the point:
Suppose one seeks to determine the parameter β for
a particle’s presumed decay angular distribution

                         (1 + β cos2 θ)/(2 + 2β/3)                         

from a set of decay observations cos θi, which can
range from −1 to +1. The presumed distributions are
all symmetric about cos θ = 0, so a data set with all
cos θi negative should give a very bad fit to the the-
ory that yielded the symmetric parameterization.
But the likelihood function contains only cos2 θ. So
it’s completely insensitive to the signs of the cos θ
values.
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Figure 3. For an idealized counting experiment whose distribution of
counts n is Poissonian (equation 2 in the text), the coverage C is plotted
against the Poisson-mean parameter μ. Coverage is defined as the fraction
of all trials in which the μ range, here given by the maximum-likelihood
prescription (equation 6), actually does include the true μ. The curve jumps
around because n must be an integer, while μ is a continuous parameter.
Only when μ is large does C approach the expected 68% (dashed red line).



For two precisely defined alternative hypothe-
ses, however, the ratio of likelihood values can be
used to maximize the power of an experimental test
between those hypotheses.4

Discovery, exclusion, and limits 
Consider two idealized scenarios in which we’re
looking for new particle-physics phenomena: In one
case, we count the number of observations n. They
may be produced just by background sources (with
expected Poisson mean b), or by a combination of
background sources and new physics (expectation
b + s). When we find n larger than b, how significant
is the evidence that s is greater than zero? 

In the second case, we’re looking at the so-called
invariant-mass distributions of pairs of particles pro-
duced in high-energy collisions. The invariant mass
m of such a pair is the sum of their energies in their
joint center of mass. If enough of those pairs are, in
fact, the decay products of some hypothesized new
particle, the m distribution will exhibit a narrow peak
around the putative parent’s mass, on top of a smooth
and predictable distribution due to background
processes. Figure 4 offers an illustrative but caution-
ary tale (see PHYSICS TODAY, September 2003, page 19). 

In both cases, we’re seeking to decide whether
the data are more consistent with the null hypothe-
sis H0 (background only) or with the alternative hy-
pothesis H1 (background plus signal).5 We might
conclude that the data are convincingly inconsistent
with H0, and so claim a discovery. Alternatively, we
might set an upper limit on the possible signal
strength or even conclude that the data exclude H1.
Finally, it may be that our experiment is not sensi-
tive enough to distinguish between H0 and H1. 

The technique consists in choosing a test vari-
able t whose observed distribution should be sensi-
tive to the difference between the two hypotheses.
In the first example above, t could simply be n, the
number of counts observed in a fixed time interval.
In the second case, it could be the likelihood ratio of
the two hypotheses.

To illustrate, figure 5 shows the expected distri-
butions of t, assuming either H0 or H1, for three dif-
ferent imagined experiments. In one, shown in fig-
ure 5a, the expected distributions for the two
hypotheses overlap so much that it’s hard to distin-
guish between them. At the other extreme, figure 5b,
the larger separation makes the choice easy.

The intermediate case, figure 5c, needs discus-
sion. For a given observed value t’, we define proba-
bility values p0 and p1 for the two hypotheses. As
shown in the figure, each is the fractional area under
the relevant curve for finding a value of t at least that
extreme. Usually, one claims a discovery when p0 is
below some predefined level α. Alternatively, one ex-
cludes H1 if p1 is smaller than another predefined
level γ. And if the observed t’ satisfies neither of those
conditions, the experiment has yielded no decision.

In particle physics, the usual choice for α is
3 × 10−7, corresponding to the 5σ tail of a Gaussian
H0 distribution. That requirement is shown by tcrit in
figure 5c. Why so stringent? For one thing, recent
history offers many cautionary examples of exciting
3σ and 4σ signals that went away when more data

arrived (figure 4c, for example).
Trying to decide between two hypotheses, even

when formally employing a frequentist approach,
one may subconsciously be using a sort of Bayesian
reasoning. The essential question is: What does the
experimenter believe about the competing hypothe-
ses after seeing the data?

Though frequentists are loath to assign proba-
bilities P to hypotheses about nature, they’re infor-
mally using the likelihoods L and the Bayesian pri-
ors in the following recipe:

      
(7) 

While the likelihood ratio might favor the new-
physics hypothesis H1—for example, a particular
extra-dimensions theory with specified values of the
theory’s free parameters—the experimenters could
well deem H1 intrinsically much less likely than the

Prior H

Prior H

( )

( )

1

0

P H data

P H data

( )

( )

1

0

∣

∣
= × .

( )

( )

L data H

L data H

∣

∣

1

0

www.physicstoday.org July 2012 Physics Today 49

K
+
n INVARIANT MASSK

+
n INVARIANT MASS

K
+
n INVARIANT MASS (GeV)

N
U

M
B

E
R

 O
F

 E
V

E
N

T
S

ba

c 35

30

25

20

15

10

5

0

0 1.5 1.6 1.7 1.8 1.9

(c)

Figure 4. Invariant-mass distributions of K+–neutron pairs produced in
the bombardment of deuterons by high-energy photons. The standard
assumption that all baryons are three-quark states forbids the existence
of a particle species X that decays to K+n. (a) Assuming there is no X, one
expects a smooth distribution due to background processes. (b) The 
appearance of a peak above background at some invariant mass might
signal the existence of X with that mass. (c) The actual data from a 2003
experiment8 exhibit an apparently significant peak (red) at 1.54 GeV. But
the evidence for an exotic “pentaquark” baryon at that mass or any other
has not survived the accumulation of more data. 



standard model and thus assign it a smaller prior.
That’s a way of invoking the philosophers’ maxim
that extraordinary claims require extraordinary evi-
dence. It also explains why most physicists were in-
clined to believe that the recently reported evidence
for faster-than-light neutrinos was more likely to be
explained in terms of some overlooked experimental
feature (see PHYSICS TODAY, December 2011, page 8). 

For the exclusion of a discovery hypothesis, the
conventional choice for γ is 5%. Because that’s so
much less stringent than the conventional discovery
threshold, “disfavored” might be a better term than
“excluded.”

With the exclusion threshold so lax, cases like
the t’ shown in figure 5a present a special problem.
Even though such an experiment has no sensitivity
to the proposed new physics, there is a 5% chance
that a downward fluctuation of t will result in H1
being wrongly excluded.

A widely used ad hoc prescription for avoiding
that pitfall is to base exclusion not on the value of p1
by itself but instead on the quotient p1/(1 − p0). That
ratio of the two tails to the left of the observed t’ in
figure 5a provides some protection against false ex-
clusion of H1 when the experiment lacks the relevant
sensitivity.

The “look elsewhere” effect 
Usually the new-physics hypothesis H1 is not com-
pletely specified; it often contains unknown param-
eters such as the mass of a new particle. In that case,
an experimenter looking at a mass distribution like
those shown in figure 4 would be excited to see a
prominent peak anywhere in the spectrum. If, in
truth, there’s nothing but background (H0), the
chance of a large random fluctuation occurring some-
where in the spectrum is clearly larger than the prob-
ability of its occurring in a specifically chosen bin.
That consideration, called the look-elsewhere effect,

must be allowed for in calculating the probability of
a random fluctuation somewhere in the data. Look-
ing in many bins for a possible enhancement is like
performing many repeated experiments.6

The effect is relevant for other fields too. For ex-
ample, if a search for evidence of paranormal phe-
nomena is based on a large number of trials of dif-
ferent types on many subjects, the chance of a
fluctuation being mistaken for a signal is enhanced
if the possible signature is poorly specified in ad-
vance and then looked for in many data subsets.
That’s not even to mention how small a physicist’s
Bayesian prior ought to be. 

Statistical fluctuations must be taken into ac-
count, but so must systematic effects. Indeed, sys-
tematics nowadays usually require more thought,
effort, and time than does the evaluation of statisti-
cal uncertainties.7 That’s true not only of precision
measurements of parameters but also of search ex-
periments that might yield estimates of the
significance of an observed enhancement or the ex-
clusion limit on some proposed new physics.

Concerning discovery claims, it might well be
that an observed effect whose statistical significance
appears to be greater than 5σ becomes much less
convincing when realistic systematic effects are con-
sidered. For example, the sought-after signature of
dark-matter interactions in an underground detec-
tor is the accumulation of significantly more events
than the number b expected from uninteresting
background processes. (See PHYSICS TODAY, Febru-
ary 2010, page 11.) The excess would be significant,
for example, at the 5σ level if we observed 16 events
when our estimate of b, based on random fluctua-
tions, was 3.1 events. But if, because of systematic
uncertainties such as the poorly known concentra-
tions of radioactive contaminants, b might be as
large as 4.4, the probability of observing 16 or more
background events goes up by a factor of 100, and
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Figure 5. Two different
 hypotheses, H0 and H1, yield
different expected distributions
(black and red curves) of an ex-
perimental observable t meant
to distinguish between them.
Both hypotheses assume that
the t distribution reflects known
background processes, but H1

assumes that it also reflects pu-
tative new physics. Consider

three experiments: In (a), the two expected distributions have so much overlap
that no observed value t’ yields a choice between hypotheses. In particular, a
downward fluctuation like the t’ shown here should not be invoked to exclude H1.
In (b), the expectations are so well separated that there’s little chance of an am-
biguous result. In (c), with the peaks separated by about three standard devia-
tions, deciding if the new physics has been discovered, excluded, or left in doubt
is based on consideration of probabilities p0 and p1 given by the shaded fractional
areas created by the observed t’. For the customary criteria discussed in the text,
ranges of t’ for which exclusion or discovery (beyond tcrit) of H1 can be claimed 
are marked.



the observed excess becomes much less promising.
The searches for new physics continue. Cos-

mologists tell us that most of the matter in the cos-
mos consists of particle species whose acquaintance
we have not yet made. And the standard model that
describes the known species all too well has many
more free parameters than one wants in a truly com-
prehensive theory. But discovery claims of new phe-
nomena will come under close statistical scrutiny
before the community accepts them.

In an appendix to the online version of this article, the
author has provided a quiz.
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