Faster and slower

For three of the four reactions studied, the directly measured rate constants differed by orders of magnitude from the indirect estimates that had been derived from ozonolysis experiments. The reactions with SO₂ and NO₃ were much faster than expected, and the reaction with NO was much slower-in fact, there was no measurable reaction with NO at all. "Really, it seems like we were surprised by almost every aspect of the results," remarks Taatjes.

Collaborators Carl Percival (University of Manchester) and Dudley Shallcross (University of Bristol) analyzed some of the atmospheric implications. Among the products of the SO₂ and NO₂ reactions are SO₃ and NO₃. A rapid reaction between SO3 and H2O gives sulfuric acid, H₂SO₄, which contributes to atmospheric aerosol formation; NO₃ drives much of the chemistry of the atmosphere at night. Percival and Shallcross estimated that Criegee reactions could produce 40% as much NO₃, and more than 100% as much SO₃, as other known sources of those molecules.

They had to make some assumptions, though, since so far the Sandia team has studied only the smallest Criegee intermediate at only one temperature and pressure. Future experiments should clarify the picture.

Johanna Miller

References

- 1. O. Welz et al., Science 335, 204 (2012).
- 2. A. J. Eskola et al., Phys. Chem. Chem. Phys. 8, 1416 (2006).
- 3. D. L. Osborn et al., Rev. Sci. Instrum. 79, 104103 (2008).

Microlensing suggests that our galaxy has more planets than stars

Gravitational bending of light reveals exoplanets with large orbital radii.

ost of the more than 600 exoplanets discovered to date have been found through Doppler evidence of periodic host-star motion or photometric evidence of transits across a star's face. Both methods are strongly biased in favor of planets with orbital radii much smaller than Earth's, which defines 1 astronomical unit (AU). Gravitational microlensing is an alternative technique that's most sensitive to planets a few AU from their stars. It favors very distant stars and it's relatively unbiased as to stellar mass. Though microlensing's discovery rate is still modest, it appeals to those who seek a representative galactic survey of planets with orbits like those of the solar system.

Gravitational bending of light is a central feature of general relativity. In a typical microlensing event, a foreground lensing star passing close by our line of sight to a background star produces milliarcsecond bending that focuses the background star so that it brightens over several weeks. Rarely, a planet several AU from the lensing star reveals itself by a short blip on the brightness curve as it too crosses the sight line (see the figure's panel a).

Because planetary blips typically last less than a day, finding and measuring them usually requires a two-tier strategy. First, a wide-field survey team, such as the OGLE collaboration based at the University of Warsaw, images the same star-crowded field night after night in search of the one in a million that's brightening. When the team finds one, it alerts one of several global networks of telescopes that then monitor the star round the clock for a telltale blip. If the blip is well measured, it yields the planet's mass M and orbital radius R. Since that strategy was initiated in the late 1990s, many thousands of stellar microlensing events have yielded only about two dozen planet sightings.

Now the PLANET telescope network, led by Jean-Philippe Beaulieu (Paris Institute of Astrophysics), reports an analysis of six years of its search for planets.1 Translating planet sightings into an estimate of the galactic abundance and mass distribution of planets requires a careful determination of detection efficiency as a function of M and R. And that, in turn, requires adherence to a consistent, well-defined search protocol. So the PLANET analysis limits itself to the years 2002-07, after which innovations led to protocol modifications.

The only three planets discovered by PLANET during that period are plotted in panel b, together with eight discovered during the same period by other networks with protocols of their

Your partner in innovation

Optical and spectroscopy systems

Come and visit our booth JSAP (Tokyo), 15-18 March 2012 JPS (Kobe), 24-27 March 2012 DPG (Berlin), 27-29 March 2012

Affordable, economical and flexible optical cryostats

- Improved performance
- Supplied with the new **Mercury**iTC crvogenic temperature controller
- Wide range to choose from including various sample environments, working distances, magnet options and cooling technologies (nitrogen, helium and Cryofree®)

New MercuryiTC temperature controller: Adapting to your evolving needs

- Unique design integrating self-installing plug and play expansion cards. Optional level metering and gas flow control
- Constant voltage excitation allows extremely accurate measurements

For further information: aps.nanoscience@oxinst.com

www.oxford-instruments.com/aps

The Business of Science®

Introducing MadPLL™

Instant AFM and NSOM-just add science.

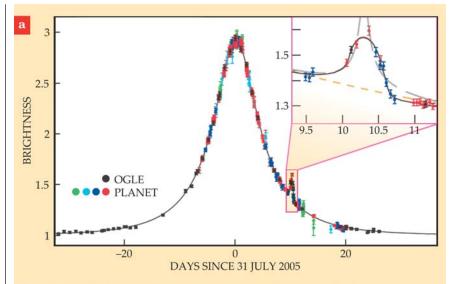
MadPLL™ includes software, digital PLL controller, probe and amplifier boards, and is fully compatible with Mad City Labs nanopositioning systems.

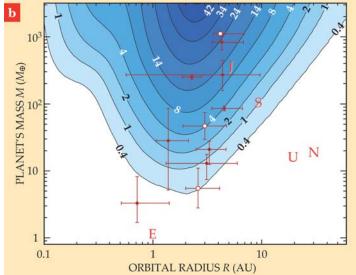
- Low cost imaging tool
- Automated control
- Integrated package
- Integrated z-axis control loop
- Suitable for resonant probes
- Build your own closed loop AFM!

+1 608 298-0855 sales@madcitylabs.com www.madcitylabs.com

Bellows-Sealed Linear *Translator* (BLT)

Operating Instructions:




3. Repeat if necessary.

McAllister Technical Services

Manufacturers of surface analytical instruments and devices

> Ph. + 208-772-9527 800-445-3688 www.mcallister.com

Microlensing planet search. (a) The brightness curve of a distant lensed star discovered by the OGLE team and followed up by the PLANET network.3 The best fit to the blip seen 10 days after maximum yields a 5.5 Earth-mass (M_a) planet trailing the foreground lensing star at a distance of 2.6 astronomical units (AU). (b) That planet and the two others discovered by PLANET during 2002-07 are plotted (open points) together with eight planets discovered by other networks (solid points) in those years. PLANET's search-efficiency contours are labeled by the number of planets its survey would have found if every lensing star had precisely one planet, all with the same given mass and orbital radius. The capital letters indicate solar-system planets. (Adapted from ref. 1.)

own. The plot's contour lines indicate detection efficiencies calculated for PLANET's six-year survey. Heavier planets are easier to detect. The survey's mass-detection threshold was about 5 Earth masses (M_{\bullet}).

The PLANET team estimated the true galactic distribution of planet masses essentially by dividing its observed M and R distribution by the detection-efficiency function and then integrating over R. In seeking the best

analytical fit for the galactic distribution, the team augmented its own meager harvest by taking account of fits by other networks to planets they found.²

Despite the increase of detection efficiency with increasing M, the density of points in panel b tends the other way. Thus the PLANET team concludes that over the R range 0.5–10 AU, a region largely unexplored by Doppler and transit searches, the galactic planetarymass distribution falls with increasing

mass roughly like $M^{-0.7}$. In particular, 62 ± 36% of all stars harbor super-Earths $(5-10 M_{\odot})$; $52 \pm 25\%$ have Neptunian middleweights (10–30 $M_{\scriptscriptstyle \oplus}$); and $17 \pm 7\%$ have Jovian planets heavier than $100 M_{\odot}$.

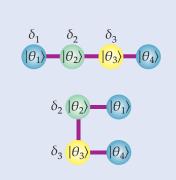
On average, the team concludes, every star has 1.6 planets in the survey's M and R sensitivity range. "So in the Milky Way," says Arnaud Cassan, who led the analysis, "planets around stars seem to be the rule rather than the exception."

Bertram Schwarzschild

References

- 1. A. Cassan et al., Nature 481, 167 (2012).
- 2. A. Gould et al., Astrophys. J. 720, 1073
- 3. J.-P. Beaulieu et al., Nature 439, 437 (2006).

A blind quantum computer makes its laboratory debut


Quantum computing promises great efficiency advantages over classical computing. Quantum communication promises tamperproof security. Combine them, and you get blind quantum computing.

escribed by Vlatko Vedral of the University of Oxford as "possibly the most exciting idea in quantum computing in the last 10 years," blind quantum computing would enable a client, who herself has no quantum computing capability, to run an algorithm on a remote server without revealing anything about her input, computation, or output. Now, Philip Walther (University of Vienna) and colleagues have demonstrated a small-scale version of a blind quantum computer.1

The experiment used a protocol² presented in 2009 by Anne Broadbent (University of Waterloo, Canada), Joseph Fitzsimons (then also at Waterloo, now at the National University of Singapore), and Elham Kashefi (University of Edinburgh). Broadbent and collaborators based their scheme on a so-called one-way quantum computer: Rather than manipulating a system of qubits and then reading out the result, the

computer starts with a highly entangled state, universal for all computations up to a certain size, and performs a series of single-qubit measurements. The results of those measurements can then be processed with a classical computer to give the computation output. To make the computation blind, Broadbent and company have the client prepare the qubits with phase angles θ_i that only she knows and have her instruct the computer to measure them at angles δ_i . The computer entangles the qubits in a specified way, measures them, and transmits the results back to the client. Without knowing the angles $\theta_{i'}$ neither the computer nor an eavesdropper can deduce the underlying computation from the angles δ_i and the measurement results.

In contrast to previously proposed schemes for blind quantum computation, Broadbent and company's protocol doesn't require the client to do anything that's not well within the bounds

A one-qubit gate (top) and a twoqubit gate (bottom) implemented on a four-qubit blind quantum computer. The qubits are prepared in initial states $|\theta_i\rangle$, pairwise entangled as shown by the purple lines, and measured at angles δ_i in order from left to right (not necessarily numerical order). The rightmost qubits in each gate are the gate's output; they could become another gate's input in a larger computation. When θ_2 and θ_3 are kept secret, the computation is blind: Neither the computer nor an eavesdropper can deduce the underlying computation. (Adapted from ref. 1.)

attocube Pioneers of precision

attoDRY1100 Fully automated, low-vibration cryogen-free measurement system

- □ Ultra-low vibration levels
- □ NEW: Integrated touchscreen for automated control
- □ Cooldown times as fast as 1 hour
- Any choice of superconducting magnet (single solenoid, 2D/3D vector)
- □ NEW: In-situ double rotator for full field (9 T) in 3D

automated

high field

Applications:

- Photoluminescence of quantum dots, nanowires, photonic crystals, NV color centers
- Raman spectroscopy of graphene, carbon nanotubes, or superconducting nanostructures
- ☐ High resolution magnetic force microscopy on superconductors or nanostructures
- □ NEW: Transport measurements with automated double rotator

Inquire at info@attocube.com

Visit attocube at the APS March Meeting in Boston and the DPG March meeting 2012 in Berlin at booth EG7/EG8

