A mysterious player on the atmospheric stage

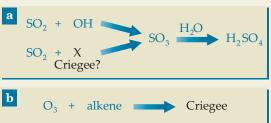
The unidentified molecule's reaction with sulfur dioxide has implications for climate and human health.

here's not much sulfuric acid in the atmosphere—its concentration is measured in parts per trillion—but it makes its presence known by condensing into aerosol particles. Near Earth's surface, the aerosols pose a hazard to human health; at higher altitudes, they attract water to form clouds, which affect both weather and climate. Atmospheric sulfuric acid forms when SO₂ is oxidized into SO₃, which combines with water to make H₂SO₄. The oxidation step is attributed to a reaction with OH radicals, highly reactive short-lived molecules that are formed by sunlight.

Now Lee Mauldin III (University of Helsinki and University of Colorado Boulder) and an international team of colleagues have shown¹ that there must be another atmospheric oxidant that, in some environments at least, can rival OH in its capacity for turning SO₂ into H₂SO₄. The competing reactions are shown in panel a of the figure. The re-

searchers have built up a wealth of indirect evidence that the new oxidant is a Criegee intermediate, a type of unstable molecule that forms in a reaction between ozone and alkenes (unsaturated hydrocarbons), as shown in panel b. But in the absence of a direct measurement, they identify it only as "X."

The discovery was a product of work to measure atmospheric OH concentrations. A long-outstanding experimental challenge of atmospheric chemistry, OH measurements have been performed by only a handful of teams worldwide, including Mauldin's. The typical method is to combine an atmospheric sample with enough SO₂ that all the OH present reacts and forms H₂SO₄.


To account for the possibility of other sources of H₂SO₄, researchers repeat the measurement while adding to the sample not just SO₂ but also a scavenger compound that destroys OH radicals more quickly than they can react with

SO₂. The difference in H₂SO₄ concentrations formed with and without the scavenger thus gives the OH concentration. As Mauldin recounts, "At first, we were more interested in getting the OH measurement right" than in uncovering the source of the background H₂SO₄ that formed in the presence of the OH scavenger. But as the OH data accumulated, it soon became clear that the background was often too strong to ignore.

The background exhibited some patterns. It correlated with ozone concentrations. And it was especially high in forested areas, where certain alkenes give evergreen trees their characteristic scents. Mauldin and colleagues took to the laboratory to check the correlations more precisely and found that they held: Add the necessary ingredients for a Criegee intermediate, and you oxidize more SO₂.

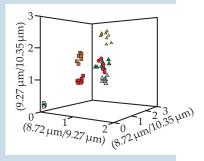
That's strong evidence, but not proof, that the new oxidant X is a Criegee intermediate. Observing X directly, rather than via its reaction products, could close the case, but that would be a difficult measurement: Only in the past year was a gas-phase Criegee intermediate directly observed for the first time (see PHYSICS TODAY, March 2012, page 17). For now, the priority for Mauldin and colleagues is to work out the details of X's role in the atmosphere. Where and when is it most abundant? And other than SO₂, what molecules if any does it react with? Johanna Miller

The conversion (a) of sulfur dioxide to sulfuric acid is largely attributed to OH, which reacts with SO_2 in the presence of oxygen to form SO_3 . Lee Mauldin and colleagues have shown that there must be another molecule, which they identify as X and suggest may be a

Criegee intermediate, that does the same job. (b) Atmospheric Criegee intermediates form in a reaction between ozone and alkenes (unsaturated hydrocarbons).

Reference

1. R. L. Mauldin III et al., Nature 488, 193 (2012).


physics update

These items, with supplementary material, first appeared at http://www.physicstoday.org.

learing chemical compounds in real time. The ability to detect and identify gaseous compounds quickly and accurately has many applications, whether for real-time pollution monitoring or for sensing chemical weapons on the battlefield. A common, sensitive method for measuring a trace gas is laser photoacoustic spectroscopy. In LPAS, the absorption of laser light by a sample generates local heating, which in turn generates acoustic waves; those waves can be detected by a sensitive microphone and analyzed (see PHYSICS TODAY, May 2009, page 34). Now Kristan Gurton and colleagues at the Army Research Laboratory have demonstrated a way to expand LPAS to multiple absorption signals, which allows the presence of a particular gas species to be detected in real time. The team's approach is facilitated by the increased availability of lasers—particularly quantum cascade lasers—in the spectrally rich mid-IR. The researchers filled a photoacoustic cell with the gas to be analyzed and then

illuminated it with three lasers of different wavelengths simultaneously. By modulating each laser at a different frequency, Gurton and company could separate out from the micro-

phone signal the absorption at each laser wavelength; the ratios of the absorption signals yielded concentration-independent metrics. Tests on varying concentrations of different compounds—acetone, isopropyl alcohol, and five chemical nerve agents—exhibited clear absorptionratio distinctions for all but

two of the species, as seen here, with parts-per-million sensitivity. Adding additional lasers at different wavelengths should allow greater discrimination. The researchers envision that a sufficiently rugged device for field use would be about the size of a milk carton. (K. P. Gurton, M. Felton, R. Tober, Opt. Lett. 37, 3474, 2012.)