That response ensures that grains continue to abut each other, forestalling failure of the bulk material. As the accompanying figure shows for samples that consisted of 90% forsterite and 10% periclase (MgO), the materials could withstand strains of more than 500%. Moreover, two electronic diagnostics, electron back-scattered diffraction and transmission electron microscopy, revealed that grains in the mantle analogues grew like grains in materials whose superplasticity is established. Having measured the temperatures and strain rates for which mantle analogues become superplastic, the team estimated that superplasticity could help Earth's mantle accommodate a 200-km slab that takes 60 million years to penetrate 3000 km. (T. Hiraga, T. Miyazaki, M. Tasaka, H. Yoshida, *Nature* 468, 1091, 2010.)

What killed top-kill? Global news coverage of the blown-out BP-operated Macondo well documented several efforts to stem the roughly 8 million liters per day of crude oil that gushed into the Gulf of Mexico from April to July 2010. One notable failure was the "top-kill" method to plug the well by pumping a dense

slurry of drilling mud into it—reportedly, much of the mud was swept out by the spewing oil. A recent study by scientists at Lawrence Livermore National Laboratory and Washington University in St. Louis points to fluid shearing as the chief culprit in top-kill's failure. Turbulent eddies, caused

by the velocity differences between the counterstreaming mud and oil, likely sheared the mud, breaking it up into packets of fluid whose settling velocities were an order of magnitude smaller than the upward velocity. In laboratory experiments, the researchers confirmed their theory and demonstrated a possible solution, adding a viscoelastic polymer to an aqueous cornstarch mixture to represent the drilling mud. As the images show, the control fluid (left, in green) suffered turbulent breakup, but the polymer-laced fluid (center) descended as a coherent slug or, at lower flow rates (right), as stringy, connected globules. The researchers calculate that a polymer-doped slug of drilling mud at the Macondo well would have descended with a terminal velocity of roughly 7 m/s, nearly double the estimated 3.7 m/s ascent of escaping oil. (P. Beiersdorfer et al., *Phys. Rev. Lett.*, in press.)

Counting a mole of silicon atoms. Avogadro's number, N_A , links the microscopic and macroscopic worlds by specifying how many individuals make up a mole. Now an international team of metrologists has obtained N_A with an unprecedented precision of 30 parts per billion. The result: $N_A = 6.02214078(18) \times 10^{23}$. The idea behind the new experiment is simple. A sample from a crys-

talline silicon-28 boule, shown in the figure, was subjected to x-ray interferometry, which yielded the volume of the 8-atom Si unit cell. Other bits of the boule were painstakingly fabricated into spheres whose volumes and masses were

carefully measured. The spherical volume divided by the unitcell volume gives the number of Si atoms; the mass gives the number of moles. Voilà, atoms per mole. The devil, of course, is in the details. The team needed to measure and account for such flaws as pointlike defects in the boule and surface oxidation on the spheres. Furthermore, uncertainty in the isotopic composition of the silicon translates into an uncertainty in the mass of a mole. Indeed, questions of isotopic composition plagued earlier, similar experiments. In their most recent determination, the researchers worked with a crystal that was highly enriched in 28 Si and applied an innovative suite of mass spectrometry techniques to measure the minute remainders of 29 Si and 30 Si. The new N_A does more than tweak the size of a mole; in combination with other precision experiments, it will be used by metrologists to refine the values of several other fundamental constants. (B. Andreas et al., *Phys. Rev. Lett.*, in press.)

Iron in the night sky. Even in the absence of the Moon and stars, the night sky would not be black. Chemical reactions in the upper atmosphere emit faint light called airglow, whose spectrum has been studied for more than a century. Much of the emission comes from atomic and molecular oxygen, hydroxyl radicals, sodium, and, at higher latitudes, nitrogen dioxide. But after subtracting those species' contributions from the airglow spectrum at lower latitudes, observers have noted a broad band of unaccounted-for emission in the orange part of the visible spectrum, between roughly 550 and 650 nm. Using measurements from the Optical Spectrograph and Infrared Imager System (OSIRIS) on Sweden's Odin spacecraft, Dick Gattinger and Ted Llewellyn (University of Saskatchewan) and colleagues have now identified the source of that band: iron monoxide. Several factors supported the team's conclusions. Nitrogen dioxide was ruled out since sunlight destroys it at lower latitudes and, moreover, it has a different spectral signature. Laboratory measurements of FeO, on the other hand, yield a similar emission spectrum. Iron's atmospheric abundance is comparable to that of sodium, a known airglow contributor. And an orange emission band observed a decade ago originating from iron-containing meteors was also matched to the laboratory FeO spectrum. Subsequent ground-based measurements show that the FeO emission exhibits dramatic temporal fluctuations. The team postulates that FeO is generated through reactions between atmospheric iron and ozone. (W. F. J. Evans et al., Geophys. Res. Lett. **37**, L22105, 2010.)

Positronium in confinement. Porous materials have numerous scientific and technological uses, including catalysis, filtering, and, it turns out, atomic physics. By confining atoms within pores, one can reduce the effects of various mechanisms that broaden spectral lines. Moreover, porous materials can be very efficient for making positronium (Ps). As incident high-energy positrons scatter off the material's nuclei and electrons, they slow down and can bind with one of the electrons. The resulting Ps atoms subsequently diffuse into the pores, where they get trapped, further thermalize, and can have long lifetimes, upward of 50 ns. David Cassidy, Allen Mills, and colleagues at the University of California, Riverside and San Diego State University have now looked at the spectroscopic consequences of Ps confinement, in particular the effect on the 1S–2P Lyman- α transition. Working with a silica film with pores on the order of 5 nm, they compared the spectral lines of Ps atoms trapped in the film with those of Ps atoms that had escaped the film. The team found that the line is significantly shifted and that confinement indeed narrows the width. Calculations incorporating confinement's effect on not only a Ps atom's orbitals but also its center of mass explained the energy shift: Whereas the 15 state tends to keep away from the walls, the 2P state tends to fill cavities smaller than about 5 nm, and the wall interactions raise the state's energy. (D. B. Cassidy et al., *Phys. Rev. Lett.* **106**, 023401, 2011.) —RJF