Environmental impacts of shale-gas production

avid Kramer, in the July 2011 issue of PHYSICS TODAY (page 23), presented a fairly thorough review of the status and issues associated with the extraction of shale gas in the US. Much is still unknown about the environmental effects of shale-gas production. Eight federal and state government agencies are currently working together to collect baseline data on a future shale-gas drill site in southwestern Pennsylvania, with the intent of monitoring environmental impacts through the drilling and fracturing process and for some time afterward.¹

Several statements in Kramer's news story are misleading or incorrect. The piece mentions gas industry claims that no case of groundwater contamination caused by hydraulic fracturing (fracking) has ever been documented. In the next paragraph, Anthony Ingraffea of Cornell University is quoted as stating that "thousands of cases" of groundwater contamination due to oil and gas drilling have been documented. Despite requests, Ingraffea has not shared that documentation or published it in the peer-reviewed literature.

Although the two statements regarding groundwater sound contradictory, they are, in fact, two separate issues. In most instances, fracking takes place at such great depths that it is highly unlikely to affect shallow aquifers in any way. Detailed microseismic data in both the Marcellus and Barnett shales² showed that none of the induced fractures in the shales approached within several thousand vertical feet of the deepest freshwater aquifers overlying them. On the other hand, a surface spill of fracturing fluid, followed by ground infiltration and percolation down to an aquifer used for drinking water, is a

Letters are encouraged and should be sent by email to ptletters@aip.org (using dard mail to Letters, Physics Today, Amer-Ellipse, College Park, MD 20740-3842. mailing address, email address, and daytime phone number on your attachment or letter. You can also contact us much more likely contamination route. Indeed, that is how many common contaminants-from gasoline additives to agricultural fertilizers-have entered the groundwater.

The Kramer account also overstates that Marcellus shale fracking operators must find the means to dispose of up to 7 million gallons of wastewater generated per well. Drillers typically use 3 million to 5 million gallons of water to frac a multistage well, and only about a quarter to a third of that total volume of water is recovered. Because of higher disposal costs under new regulations, flowback is now essentially 100% recycled into the next well as a standard practice. After the final frac treatment, the recycled water is injected down a separate disposal well, as stated in the article.

The issue of methane in groundwater requires much more data and analysis before any conclusions can be drawn. Each case probably has unique circumstances and requires a forensic-type investigation to determine the source of the gas and the route by which it may have migrated into a domestic water well. The Duke University study³ Kramer cites suffers from several flaws, including a lack of predrilling baseline data and no assessment of the local geology or hydrology. Alternative explanations, such as gas migration from shallow bedrock into aquifers, were not explored.

It is important for the scientific and regulatory communities to focus on protecting water resources, air quality, habitat, and ecosystems during shalegas production. Objective data are needed to update state oil and gas regulations, identify environmental concerns, and define mitigation strategies for the production of this important resource. Misleading or inaccurate statements do little except shift focus away from the real problems and needlessly worry the public.

References

- 1. For a summary and details of the study, see D. J. Soeder, Eos Trans. Am. Geophys. Union 91(32), 277 (2010).
- 2. K. Fisher, American Oil and Gas Reporter 53(7), 30 (2010).
- 3. S. G. Osborn, A. Vengosh, N. R. Warner, R. B. Jackson, Proc. Natl. Acad. Sci. USA 108, 8172 (2011).

Daniel J. Soeder

(daniel.soeder@netl.doe.gov) US Department of Energy Morgantown, West Virginia

■ David Kramer's news item was informative and enlightening regarding the environmental impact of shale-gas hydraulic fracturing (fracking). There is yet another environmental impact not mentioned: mining of the sand that is needed for fracking. In the past few years, energy companies have been leasing or purchasing land that holds the 500-million-year-old Jordan sandstone formation stretching across Minnesota and Wisconsin, beneath woodland, farmland, and bluffs. The silica sand from that formation is ideal for fracking. One company, Gulfport Energy, has access to 20 million tons of it.

At least three environmental problems attend the mining of sand from the Jordan formation. First, the topography of the land will be changed forever; the bluffs will be gone. Second, the dust from silica sand causes a variety of lung diseases, including cancer. Third, large trucks continually transporting the sand to wells in Texas and elsewhere will negatively affect the natural beauty

and serenity of the area.

Sand mining is generally not well regulated at the state or federal level. Local citizens, cities, and counties have been questioning and opposing the massive mining operations, but city and county governments simply do not have the financial resources to contest the actions of large energy companies. Interested readers should see "Silica sand is the new gold" by Josephine Marcotty for the *Star Tribune*, online at http://www.startribune.com/local/ 123670439.html.

> Joseph Kapusta (kapusta@umn.edu) University of Minnesota Minneapolis

Fluid dynamics and Pollock's paint applicators

uthors Andrzej Herczyński, Claude Cernuschi, and L. Mahadevan ("Painting with drops, jets, and sheets," PHYSICS TODAY, June 2011, page 31) describe Jackson Pollock's painting technique and purport to explain the physics underlying the flow of paint by scaling relations, given in their equations 1, 2, and 3. Their scaling relations, however, are for