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The quantitative study of heat became feasible in the
early 18th century when Daniel Fahrenheit (1686–1736) in-
vented a mercury thermometer capable of reproducible
measurements. Even earlier, however, at the turn of the cen-
tury, Guillaume Amontons (1663–1705) had intuitively sur-
mised that heat flowed in solids in the direction of decreasing
temperature and that temperature varied in some predictable
manner with distance—Amontons himself thought the vari-
ation was linear. In 1761 Joseph Black (1728–99) introduced
the concepts of latent heat and specific heat, both of which
pertain to heat storage rather than to heat movement. With
the invention of the calorimeter in the 1780s by Antoine
Lavoisier (1743–94) and Pierre Simon Laplace (1749–1827),
the latent heat of melting ice proved to be a standard for
quantifying heat.1 The nature of what had been quantified,
though, would elude comprehension throughout the 19th
century.

In 1776 Johann Heinrich Lambert (1728–77) took a major
step forward in understanding heat movement in solids by
considering a long metal rod heated at one end, with heat al-
lowed to radiate to the atmosphere. His motivation in per-
forming that experiment was to correct Amontons’s sugges-
tion of a linear temperature profile. The experiment and its
interpretation were posthumously published in 1779.2 As ex-
plained in figure 1, Lambert found that the temperature pro-
file along the rod decreases logarithmically. 

Lambert exhibited remarkable insight in framing steady-
state heat conduction in terms of energy balance when he 
remarked, 

The heat flows gradually to the more distant
parts, but at the same time travels from each part
to the air. So that when the fire has burnt and
been maintained long enough at the same
strength, every part of the bar finally acquires a
definite degree of heat because it constantly ac-
quires as much heat from parts of the rod nearer
the fire as it transmits to the more distant parts
and the air. (reference 3, page 163)

Also insightful was Lambert’s recognition of the impor-
tance of geometry in governing the temperature profile. He
observed that “there is an uncertainty because Amontons
does not say what his rod looked like” (reference 3, page 187).

Lambert’s conceptual framework played an important role in
a later formulation of the heat equation by Joseph Fourier
(1768–1830).

At about the time of Lambert’s experiment, Benjamin
Franklin (1706–90) conceived a scheme to evaluate relative
heat- conducting abilities of different metals by coating them
with wax, heating them, and observing the distance to which
wax would melt in different cases. During a visit to France in
1780, Franklin gave his experimental concept and the mate-
rials he had collected to Jean  Ingen-Housz (1730–99), a Dutch
biologist and chemist, whom he encouraged to conduct the
experiments at his leisure.

Ingen-Housz coated a number of wires with wax; all had
the same length and diameter, but each was of a different ma-
terial. The wires were tightened in parallel between blocks of
wood. Ingen-Housz then dipped one end of each wire in hot
oil, taking care to dip all the wires at the same time and over
the same length. He observed that the wax coat melted along
all wires, but the speed of the melt propagation varied among
the materials; he presumed that it varied directly with the
speed with which heat ran through the various metals.4 In all,
he conducted 12 experiments using seven metals. Results
from one of those experiments are shown in figure 2. Al-
though Ingen-Housz observed some variation, he found the
following order of decreasing conductivity: silver, copper,
gold, tin, iron, steel, and lead.

The next major contribution was that of Count Rumford
(born Benjamin Thompson; 1753–1814). Motivated by the
need to more efficiently clothe the Bavarian army, Rumford
studied relative insulating properties of cotton, silk, wool,
fur, down, and other materials. His basic apparatus, shown
in figure 3, consisted of a thermometer enclosed and hermet-
ically sealed in a carefully blown glass bulb. The bulb was
evacuated or filled with a material of interest: air, water, mer-
cury, silk, wool, fur, and so on. Rumford used one of two pro-
cedures: He either plunged the apparatus first into a hot bath
and then into freezing water to observe the gradual decline
in temperature as a function of time, or he reversed the
process, plunging the apparatus first into freezing water and
then into a hot bath. Regardless, the rate of heat loss or gain
as revealed by the temperature–time relation was considered
a measure of thermal conductibility. Based on his experi-
ments, Rumford concluded, for example, that moist air was
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a better conductor than common air. Some of the materials
he studied and their relative conducting powers5 are mercury
(1000), moist air (330), water (313), common air (80.41), rar-
efied air (one-fourth the density of common air; 80.23), and
torricellian vacuum (55).

By the close of the 18th century, thermal conductivity had
been understood in an intuitive sense, but imprecisely. Nei-
ther Ingen-Housz nor Rumford recognized that the rate of
change of temperature depends on both thermal conductivity
and specific heat. Lambert astutely focused on the steady
state. In his experiment, thermal conductivity was masked by
radiative heat loss. Nonetheless, the experimental methods of
Lambert and  Ingen-Housz would have significant influence
on 19th-century investigations of heat conduction.

Fourier’s theory of heat conduction 
In 1802, upon his return to France from Napoleon’s Egyptian
campaign, Fourier was appointed prefect of the department
of Isère. Despite heavy administrative responsibilities,
Fourier found time to study heat diffusion.6 He was inspired
by deep curiosity about Earth and such phenomena as the at-
tenuation of seasonal temperature variations in Earth’s sub-
surface, oceanic and atmospheric circulation driven by solar
heat, and the background temperature of deep space.7

Fourier began with a paper by Jean Baptiste Biot (1774–1862).8

Without citing Lambert, Biot had attempted to formulate a
differential equation for heat conduction in a rod heated at
one end and able to dissipate heat to the atmosphere. His ap-
proach was based on action at a distance and Newton’s law
of cooling, which states that the rate of cooling of an object is

proportional to the difference between the object’s tempera-
ture and that of the atmosphere. That line of attack was un-
successful because Newton’s law, appropriate for radiative
heat loss, is inadequate for conductive transfer.

Starting with Biot’s approach, Fourier obtained mathe-
matical results that were incorrect and unsatisfactory. He
then abandoned the action-at-a-distance approach and,
based on his own physical reasoning, concluded that temper-
ature varied continuously along the length of the rod. Fourier
recognized that conservation of heat, as conceived by Lam-
bert, required that conductive heat flow along the rod be bal-
anced by radiative heat loss to the atmosphere. Accordingly,
he made a distinction between external conduction, gov-
erned by Newton’s law, and internal conduction. Thermal
conductivity, appropriate for characterizing the internal con-
duction, was defined by Fourier as the quantity of heat per
unit time passing through a unit cross section divided by the
temperature difference of two constant-temperature surfaces
separated by unit distance (see figure 4). Fourier presented
his ideas in an unpublished 1807 paper submitted to the In-
stitut de France.9

Fourier was not satisfied with the 1807 work. It took him
an additional three years to go beyond the discrete  finite-
 difference description of flow between constant-temperature
surfaces and to express heat flux across an infinitesimally
thin surface segment in terms of a temperature gradient. His-
torian of science John Herivel3 and mathematician Ivor Grat-
tan-Guinness6 give detailed discussions of the transition.
Fourier’s refinement enabled him to express the boundary
condition at the radiative surface as hT = −K dT/dn, where h

Figure 1. Johann Heinrich Lambert, a versatile scientist and philosopher, introduced the heat-conservation framework for ana-
lyzing heat conduction in a rod heated at one end and allowed to dissipate energy to the atmosphere. He showed that the tem-
perature y and distance x in his experimental data satisfied an exponential relation, y = 97 +1065 · exp(−x/116.3). The left column
in the table gives the distance, with units unspecified. The next two columns give the temperature in the Fahrenheit and Newton
scales, respectively, based on the melting or boiling of various substances (column 4). From top to bottom, the materials tested
by Lambert are specified as white-hot iron, thin glass, lead, tin, lead–tin alloy, boiling water, wax, melting tallow, and butter.
(Table adapted from ref. 2.)
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is a radiative heat transfer coefficient, also called external
conductivity; T, the temperature in excess of the atmospheric
value; K, the thermal conductivity; and n, the normal coordi-
nate, defined to increase from inside to outside. In particular,
in Fourier’s final formulation, the flow process in the interior
is distinct from that at the surface.

Fourier’s experiments
When Fourier presented his mathematical theory, the nature
of heat was unknown: There was active debate as to whether
it was a fluid (called caloric) or a kind of motion. Fourier con-
sidered mathematical laws governing the effects of heat to be
independent of all hypotheses about the nature of heat. It was
known that with the help of a  Lavoisier– Laplace calorimeter,
the quantity of heat contained in a body could be quantified
in terms of an equivalent quantity of heat required to change
a certain mass of ice to liquid. But no method was available
to measure flowing heat. Consequently, in order to demon-
strate that his mathematical theory was physically credible,
Fourier had to devise suitable experiments and methods to
measure thermal conductivity.

It is not widely recognized that in his unpublished 1807
manuscript and in the prize essay he submitted to the Institut
de France in 1811, Fourier provided results from transient
and steady-state experiments and outlined methods to invert
experimental data to estimate thermal conductivity.10 For
some reason, he decided to restrict his 1822 masterpiece, The
Analytical Theory of Heat,7 to mathematics and omit experi-
mental results. In all, Fourier carried out four sets of experi-
ments. Of those, two are pertinent to  thermal- conductivity
determination; they concerned the distribution of tempera-
ture in a heated annulus and the rate of cooling of a sphere.

The first experiment used a polished iron annulus, about
0.35 meters in diameter, with a square cross section of edge
size 2L, heated at one point with an Argand oil lamp. Heat
was allowed to radiate to the atmosphere across the polished

surface. Two groups of three regularly spaced holes—the two
sets on opposite quadrants of the annulus—had been drilled
halfway through the annulus to hold thermometers. Mathe-
matically, steady-state heat flow is governed by the equation
describing Lambert’s experiment: d2T/dx2 = 2hT/KL, where x
is the distance along an arc chosen as the x-axis. The solution
to the equation is

                              (1)
Equation 1 confirms Lambert’s empirical suggestion that

the temperature profile is logarithmic. From that result,
Fourier deduced that for three equally spaced thermometers,
the quotient (T1 + T3)/T2 (T2 is the temperature excess of the
middle thermometer) should be a constant, independent of
the thermometers’ location or temperature—a result that was
confirmed by his measurements.

Fourier’s other key experiment involved a small sphere
with radius X, specific heat C, density D, and h ≪ K. The
sphere was heated in the interior to a constant temperature
T0 in excess of atmospheric temperature and allowed to cool
in an atmosphere that was maintained at constant tempera-
ture. For that case, Fourier found that temperature inside the
sphere would vary only slightly around an average time-
independent value

                                 (2) 
Before we turn to Fourier’s determination of thermal

conductivity, one other of his results needs mention. In his
prize essay, Fourier addressed a terrestrial heat problem that
had inspired him, namely, the propagation of diurnal and
seasonal temperature changes through Earth’s crust. Noting
that Earth’s diameter is very large, Fourier considered an in-
finite one- dimensional vertical column extending down from
the land surface (x = 0), subjected to a periodic variation of
surface temperature. The periodic function, in general, is a
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Figure 2. In a transatlantic collaboration, Jean Ingen-Housz (left) evaluated relative conductivities of different metals based
on the experimental design and materials of Benjamin Franklin (right). The idea was to coat wires of various materials with wax
and see how quickly the melt line propagated when one end of the wires was heated. The figure shows melt propagation dis-
tances from the bottom for seven materials at a fixed time. In a gracious acknowledgment,  Ingen-Housz stated, “If these results
bring light to the question we are trying to resolve, it is to this great man that physics will be indebted, not to me, who only fol-
lowed exactly the project of Mr. Franklin.”4 Six decades later, their method helped establish directional dependence of thermal
conductivity in crystals. (Propagation figure adapted from ref. 4.)
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sum of many sine and cosine waves. Fourier showed that for
a simple periodic temperature signal with mean T0 , ampli-
tude A, and period P, the heat equation is satisfied by 

           
(3)

with ε a constant contribution to the phase offset. That is to
say, with increasing depth the perturbation amplitude atten-
uates and the phase shifts, with both phenomena governed
by √πCD/KP.

Fourier’s determination of K
The first experimental determination of a thermal conductivity
in a solid was made by Fourier, who worked with a steel an-
nulus and sphere (reference 10, pages 14–15). In the absence of
any method for measuring flowing heat, he had to rely on
knowledge of the external conductivity and specific heat of the
material. Accordingly, by taking two temperature–position
measurements on the annulus and using equation 1, Fourier
estimated h/K from the relation ln(T1/T2) = (x2 − x1) · √2h/KL,
where subscripts indicate the two measurements. Next, by
applying equation 2 to data from the sphere experiment, he
estimated h/CD by the relation ln(T1/T2) = (t2 − t1) · 3h/CDX.

Fourier then combined his estimates of h/K and h/CD
with the known value of CD to arrive at a value of 3/2 for
thermal conductivity; in his convention, the unit of heat was
the quantity of heat required to convert 1 kg of ice at the freez-
ing point to an equal mass of water at the same temperature;
the other relevant units were meters, minutes, and kilograms.

Given his determination of K, Fourier reconsidered the
issue of how temperature changes propagate through Earth’s
crust. He substituted his value of CD/K, the only known value
for that ratio, into equation 3 along with a period P of 1440
minutes (that is, one day) to estimate that the amplitude of
the boundary signal would be negligible at a depth of ap-
proximately 2.3 meters. His result was consistent with the
prevalent knowledge that diurnal temperature variations die
out within a few meters of the land surface.

Other 19th-century contributions
In the course of the 19th century, thermal conductivity be-
came a material property of fundamental importance for
both scientific and engineering reasons. With his mathemat-

ical solutions (equations 1–3), and by providing the first es-
timate of a thermal conductivity, Fourier set the stage for the
investigations that would take place during the rest of the
century. Experimenters attempting to determine thermal con-
ductivity pursued research along two broad lines. The first
was to quantitatively establish the relative conductivities of
different materials, and the second was to estimate absolute
conductivity of specific materials by inverting experimental
data.

Recall that  Ingen- Housz used the rapidity with which
melting progressed in different materials as a measure of rel-
ative conductivity. As noted earlier, he did not recognize the
importance of specific heat; as later shown by Fourier, the
rate of diffusion actually depends on the quotient K/CD, now
known as the thermal diffusivity. Accordingly,  César-
 Mansuète Despretz (1798–1863) ventured to determine rela-
tive thermal conductivities more precisely using Fourier’s so-
lution to Lambert’s problem—in particular, the consequence
that for three thermometers spaced uniformly along a rod,
(T1 + T3)/T2 is a constant.11 Let 2κ be such a constant, and con-
sider two materials A and B having identical dimensions and
exterior conductance h. A little algebra reveals that their rel-
ative conducting ability is given by

                                                
(4)

Despretz found that the ratio of the conductivity of cop-
per to that of iron was 12/5. The set of materials considered
by Despretz, from most conducting to least, is copper, iron,
zinc, tin, lead, marble, porcelain, and brick.

The most direct way to determine absolute thermal con-
ductivity would be to take a slab of material with parallel
walls, with one wall being maintained at the boiling point of
water by continuous supply of steam and the other main-
tained at zero degrees by continuous melting of ice. Then the
flux of heat between the walls could be estimated from the
quantity of steam condensed or the quantity of ice melted.
First introduced by Jean Claude Péclet (1793–1857),12 that 
approach and its variants were attempted by others, with
limited success.

Discounting the direct method left two approaches for
measuring absolute thermal conductivity, both suggested by
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Figure 3. Count Rumford

(Benjamin Thompson) was a
scientist, inventor, and en-
trepreneur. He conducted
experiments on heat con-
duction “with a view to the
investigation of the causes
of the warmth of natural
and artificial clothing.”5 In
those studies, he enclosed
thermometers in carefully
blown glass bulbs filled with
various materials and used
the rate of temperature
change as a measure of the
materials’ “conducting
power.” (Drawings adapted
from ref. 5.)
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Fourier. The first, essentially the method he used to determine
the thermal conductivity of steel, was to combine steady-state
data from a rod heated at one end with data from transient
cooling of the same material in the atmosphere. The second ap-
proach was to impose a periodic temperature variation at the
boundary of a 1D column and record the attenuation of am-
plitude or lagging of phase with distance from the boundary.

James David Forbes (1809–68; see figure 5), who appears
to have been unaware of Fourier’s experimental work on
thermal conductivity, determined the absolute conductivity
of an 8-foot-long bar of wrought iron with a 1.25-inch-square
cross section.13 He used Lambert’s experimental design, sup-
plemented by a second experiment in which a segment of the
same bar was allowed to cool in air. His experimental ap-
proach was similar to Fourier’s two-step procedure for steel,
but unlike Fourier, Forbes did not rely on solutions to the heat
equation; rather, he used a graphical procedure. Accordingly,
he plotted temperature T in excess of atmospheric tempera-
ture as a function of position x from the steady-state experi-
ment and fitted a smooth curve to enable a graphical estima-
tion of T and dT/dx at any point. He also plotted the decline
of T with time from the second experiment and fitted a curve
that enabled him to estimate T and dT/dt at any time for the
bar segment under consideration.

Forbes recognized that in the steady state, the quantity
of heat −K(dT/dx) crossing the bar at x will be exactly equal
to the quantity of heat lost to the atmosphere from the bar be-
yond x. Thus he could estimate K by extracting dT/dx from
one of the curves and evaluating the heat lost to the atmos-
phere with the help of the dT/dt curve. That is, consider the
vicinity Δx on the bar with temperature T and rate of temper-
ature decline dT/dt, as read from the experimentally deter-
mined curve. The rate at which heat is lost to the atmosphere
by that segment is (CDAΔx)dT/dt, where A is the cross-
sectional area. Thus, if the bar beyond x is divided into I seg-
ments, the total rate of heat loss ΔH to the atmosphere is

                                                 
(5)

and K = (ΔH)/(A · dT/dx). 
Forbes’s data showed that thermal conductivity for

wrought iron at 200 °C was only about 77% of its value at

100 °C; indeed, Forbes established for the first time that the
absolute conductivity of wrought iron depended on temper-
ature. His result, obtained with a down-to-earth approach
based on the definition of K and the known value of specific
heat, could not have been obtained with Fourier’s mathemat-
ical approach because the heat equation assumes that K is in-
dependent of T. Forbes stated that as far as he knew, no other
method had succeeded in measuring absolute conductivity.
Clearly, he was unaware of Fourier’s prize essay.

Lord Kelvin (born William Thomson; 1824–1907) used a
result equivalent to equation 3 to decipher the thermal conduc-
tivity of Earth’s crustal materials from underground tempera-
ture measurements made over a period of 13 years by Forbes
near Edinburgh.14 Kelvin, likely unaware that Fourier’s prize
essay had presented the solution to the heat equation subject
to a periodic boundary condition, relied on an independent
derivation of the temperature, which showed that for two
planes separated by a distance d, both the logarithm of the 
amplitude and the phase change by d√πCD/KP. By analyzing
long-term temperature observations at different depths,
Kelvin estimated the thermal conductivity of trap rock, 
sand, and sandstone.

Directional dependence in crystals
Even during the 17th century, it was known that light trav-
eled in crystals with different facility in different directions,
as manifest in double refraction, or birefringence. That be-
havior appears to have motivated some mineralogists of the
early 19th century to investigate if heat, too, would move
through crystals with direction-dependent facility.

Henri Hureau de Sénarmont (1808–62), a mineralogist,
conducted notable experiments along those lines. He took
thin plates of various crystals, drilled a hole in the center of
each, coated them with wax, and continuously applied heat
through a wire or a tube inserted into the hole. He then ob-
served the shape of the isothermal envelope radiating out
from the center as evidenced by the melting wax. He found
that for crystals belonging to the cubic system or for amor-
phous materials, the envelope was circular. But in other sys-
tems the envelope had an elliptic or oval shape whose exact
form depended on the orientation of the plate relative to the
crystallographic axes. For planes parallel to the c-axis in
quartz, for example, the major axis of the ellipse was 1.31
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Figure 4. Joseph Fourier’s first
considerations of heat flow were
presented in an unpublished arti-
cle from 1807.9 In that paper,
Fourier rejected action at a dis-
tance between disconnected
bodies and instead conceived of a
continuous, steady flow of heat
between constant-temperature
surfaces in a prism of uniform
cross section. That step was piv-
otal in the development of his
theory of heat. On the sketch, a, x,
and A denote the positions of
three surfaces with corresponding
constant temperatures of b, y, and
B. Fourier indicated that b > B by
drawing the segment bc longer
than the segment BC. (Sketch
adapted from ref. 6.)
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times the minor axis.15 Sénarmont’s results qualitatively es-
tablished that thermal conductivity, just like refractive index,
is directionally dependent, with characteristic directions re-
lated to crystallographic axes. That directional dependence
later came to be called anisotropy.

George Gabriel Stokes (1819–1903) provided a mathe-
matical theory to explain Sénarmont’s observations.16 Treat-
ing the crystal as a continuum with different conductivities
along three perpendicular directions, he derived expressions
to calculate heat flux across an area whose orientation rela-
tive to crystallographic axes is known, given the temperature
gradient normal to the surface. The matrix of thermal con-
ductivity components resulting from his derivation satisfied
certain invariance criteria and hence constituted a tensor.

Epilogue 
An important contribution to 19th-century physics was the
experimental discovery in 1840 by James Prescott Joule
(1818–89) that when voltaic current flows in a conductor, the
quantity of heat generated per unit time is proportional to the
product of the resistance of the conductor and the square of
the current. For the first time, Joule’s law provided a way of
estimating the quantity of electrically generated flowing heat.
Nevertheless, until the end of the 19th century, precise meas-
urement of thermal conductivity was impeded by the neces-
sity of indirectly estimating heat flow from surface emissivity
and specific heat. Among the earliest to introduce electrical
heaters as controlled sources for heat in thermal conductivity
measurements was Charles Lees (1864–1952).17

Thermal conductivity has played an important role in
the history of physics. Fourier struggled for several years to
give it a satisfactory conceptual and mathematical descrip-
tion as he was boldly breaking away from action at a distance
and planetary mechanics to set in place a continuum para-
digm. Thermal conductivity as defined by Fourier not only
was a physical property of fundamental importance, it also
served as a metaphor for electrical current flow, molecular
diffusion, and the flow of fluids in resistive media. Yet, re-

markably, flowing heat continues to be an enigma, eluding
our ability to measure it directly.

I thank Karsten Pruess and Nic Spycher for help with German and
French translation. I also greatly appreciate the library system of the
University of California.
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Figure 5. James Forbes was a meticulous 19th-century experimental physicist who made significant contributions to the sci-
ence of heat. Forbes independently discovered essentially the same two-step approach that Joseph Fourier used to determine
absolute conductivity, but instead of inverting experimental data mathematically as Fourier did, Forbes used a graphical tech-
nique and provided the first quantitative estimation of the temperature dependence of thermal conductivity. The illustration
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