
The notion of a perfect fluid arises in many fields of
physics. The term can be applied to any system that is in local
equilibrium and has negligible shear viscosity η. In everyday
life, viscosity is a familiar property associated with the ten-
dency of a substance to resist flow. From a microscopic per-
spective, it is a diagnostic of the strength of the interactions
between a fluid’s constituents. The shear viscosity measures
how disturbances in the system are transmitted to the rest of
the system through interactions. If those interactions are
strong, neighboring parts of the fluid more readily transmit
the disturbances through the system (see figure 1). Thus low
shear viscosities indicate significant interaction strength. The
ideal gas represents the opposite extreme—it is a system with
no interactions and infinite shear viscosity.

Perfect fluids are easy to describe, but few substances on
Earth actually behave like them. Although often cited as a
low-viscosity liquid, water in fact has a substantial viscosity,
as evidenced by its tendency to form eddies and whorls when
faced with an obstacle, rather than to flow smoothly as in
ideal hydrodynamics. Even the famous helium-3, which can
flow out of a container via capillary forces, does not count as
a perfect fluid. 

Two remarkable fluids
Considering how useful superfluids have proved to be as test
beds for fundamental quantum mechanics, one might expect
the study of truly perfect fluids to be of great value. It is thus
fortuitous that over the course of the past five years, investiga-
tors have discovered systems that seem to approach  perfect-
fluid behavior. Experimenters at Brookhaven National Labo-
ratory’s Relativistic Heavy Ion Collider (RHIC) reported in
2005 that collisions of gold nuclei produced a liquid state of
strongly interacting matter with a shear viscosity so low that
it was effectively negligible.1 At about the same time, a group
at Duke University reported that a system of strongly coupled
lithium atoms behaved nearly perfectly.2 (New work suggests
that other experimental systems—for example, graphene3—
are also displaying perfect-fluid behavior.) 

The apparent near perfection of the RHIC and Duke flu-
ids—one with a temperature exceeding 2 trillion kelvin, the
other a few microkelvin above absolute zero—means that the
usual intuitions based on perturbation theory don’t apply.
The perturbative approach proceeds from well-defined par-
ticles that have an associated mean free path. However, the

typical mean free paths required to obtain the observed low
viscosities are so short that they are of the same order as the
thermal and quantum fluctuations of the system. Thus many
kinetic theory estimates and perturbative computational
techniques are doomed to fail (see figure 1). Consider, for ex-
ample, quantum chromodynamics, the fundamental theory
of the strong nuclear interactions of quarks and gluons. Per-
turbative QCD has demonstrated successes in explicating a
wealth of collider data, but it has not been as successful at de-
scribing the physics at RHIC.

As with the theories describing the electromagnetic and
weak nuclear forces, QCD has a local internal symmetry
group—in its case, SU(3)—and is commonly referred to as a
gauge theory. (For a quick tutorial and definitions of terms,
see the box on page 31.) Gauge theories are the cornerstones
of the standard model of particle physics, but most of their
remarkable quantitative success has been in the perturbative
regime. QCD is perturbative when the interacting particles
transfer a lot of momentum, a property called asymptotic
freedom. But otherwise, the quarks and gluons described by
QCD are strongly coupled. As a result, quarks are bound to-
gether into hadrons such as protons and neutrons. Systems
of strongly coupled quarks and gluons are hard to describe
in detail using QCD, and the strong-coupling behavior seen
in the RHIC experiments is a profound example of a new phe-
nomenon that needs to be understood. The powerful numer-
ical techniques that enable physicists to extract some non -
perturbative physics from QCD can access only a small
subset of the observed phenomena. A more detailed under-
standing requires new tools.

In view of asymptotic freedom, the properties of the ma-
terial created at RHIC came as something of a surprise. As-
ymptotic freedom suggests that a new phase of quark–gluon
matter should form when temperatures are high enough that
the coupling between quarks and gluons decreases and the
particles are liberated from being bound inside hadrons. That
new phase of matter is known as the quark–gluon plasma
(QGP). To estimate the phase-transition temperature, theo-
rists turn to lattice QCD, a technique in which the quark and
gluon fields are placed on a discrete spacetime grid and pow-
erful computers are then used to calculate transition matrix
elements (see the article by Carleton DeTar and Steven Gott -
lieb in PHYSICS TODAY, February 2004, page 45). Lattice QCD
is a natural complement to perturbative QCD and allows for
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the computation of some physical quantities—for example,
the energy density at nonzero temperature—even for
strongly coupled particles. It predicts a phase transition from
hadrons to the QGP at about 2 × 1012 K.

The primary goal of RHIC, which collides heavy nuclei
together, was to find experimental evidence of the QGP and
study its properties. RHIC scientists expected to turn up ev-
idence of a weakly coupled gas of quarks. However, their
scrutiny of the first several years of data revealed that the az-
imuthal distribution of emitted particles has an elliptical
shape; that is, it suggests a collective push in the direction of
the largest matter-density gradients. An ideal gas boils away
nearly isotropically, with particles emitted equally in all di-
rections. The RHIC system was better modeled as a liquid
with an extremely low shear viscosity. That discovery, cou-
pled with the observation of a phenomenon called jet quench-
ing (a consequence of the opacity of the system to fast
quarks), led the heavy-ion community to announce in 2005
that whatever RHIC produced was a strongly coupled sys-
tem, something for which theoretical tools did not yet exist.

Behavior suggestive of a perfect fluid was observed at
about the same time by a group at Duke studying droplets of
ultracold 6Li atoms. There, the system was tuned to the
strongly coupled crossover region between two characteris-
tically different regimes, one with a Bose–Einstein conden-
sate of molecular pairs and the other characterized by the
Bardeen-Cooper-Schrieffer behavior associated with the for-
mation of Cooper pairs of atoms. A later explicit measure-
ment of the shear viscosity of the system yielded an ex-
tremely low value, just as for RHIC.

The following two articles, on pages 34 and 39, discuss
the Duke and RHIC experiments in greater detail and present
the evidence that the systems observed are nearly perfect flu-
ids. In this piece, we focus on what we regard as the true sur-
prise in the strange empirical convergence of the ultrahot and
ultracold: the apparent ability of string theory to describe the
emergent strong-interaction physics in terms of properties of
a black hole living in a higher-dimensional spacetime. A
number of key physical properties of the RHIC and Duke sys-
tems seem to be best captured in terms of those unexpected
new variables, which may herald an entirely new class of
techniques for studying certain types of quantum systems at
strong coupling.

The holographic principle
Over the past 12 years, the string theory community has in-
troduced an unexpected component into the study of gauge
theories: quantum gravity. At the core of the new technique
is the holographic principle, a conjecture formulated by Ger-

ard ’t Hooft4 and further developed by Leonard Susskind.5

The principle asserts that any theory of quantum gravity in
a (d + 1)- dimensional spacetime has an equivalent descrip-
tion in terms of a theory that can roughly be thought of as
living on the spacetime’s d- dimensional boundary.

The holographic principle was motivated by results ob-
tained when physicists applied the rules of quantum me-
chanics to black holes, which are described by general rela-
tivity. That work began in the early 1970s with semiclassical
efforts by Stephen Hawking, Jacob Bekenstein, and others,
and culminated in the 1990s with work in a full theory of
quantum gravity—string theory.

Although classical black holes have a surface of closest
approach from within which nothing can escape—the event
horizon—Hawking discovered that when quantum mechan-
ics is put in play, a black hole emits radiation at a definite
temperature set by its mass–energy.6 Bekenstein, realizing
that a black hole with temperature should obey the laws of
thermodynamics, argued that it should have a well-defined
entropy.7 The resulting Bekenstein–Hawking entropy for-
mula relates a black hole’s entropy S to the area A of its event
horizon, S = A/4 · (kBc3/Għ). Here kB, G, and ħ are the Boltz-
mann, gravitational, and Planck constants, respectively. That
striking result—the entropy is proportional to the area of the
horizon bounding a black hole, and not to the volume encom-
passed by the horizon—suggests that the number of degrees
of freedom needed to describe a quantum black hole likewise
scales with its area, not its volume. In other words, a black
hole creates a “hologram” of the physics of the spacetime re-
gion inside it, which is projected onto the black hole’s bound-
ary, the horizon.

Since a black hole generically forms if the mass–energy
density is high enough, it might be expected that any theory
of quantum gravity would exhibit a holographic nature when
one tries to determine its degrees of freedom by probing short
distances with high energies. From that expectation emerged
the idea that a quantum gravitational theory has an alterna-
tive description in terms of a nongravitational theory—a
“holographic dual”—in one fewer dimension. Since, petur-
batively, quantum gravity is fundamentally different from
nongravitational physics, the dual relationship must be sub-
tle. It is, in fact, a strong–weak coupling duality, meaning that
when one theory involves weak coupling and thus has a per-
turbative description, the dual description involves strong
coupling, and vice versa.

That quantum gravity arises in the context of strongly
coupled systems such as high-temperature quarks and glu-
ons and cold 6Li atoms might at first be confusing. After all,
many of us were taught that gravity is much weaker than all
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Figure 1. Strongly interacting particles
such as those depicted in the right-hand
panel typically have a short mean free
path and mean free travel time τ before
they interact with others. The system of
weakly interacting particles illustrated in
the left panel is amenable to traditional
perturbative calculational techniques,
but as τ decreases, particles begin to lose
their individual identity and those meth-
ods begin to break down.
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the other forces and that the quantum gravity scale, the
Planck scale, is well away from the regime that experiments
probe. The simple resolution of the puzzle is that it is not the
gravity of our universe that is being employed in dual con-
structions but one that is essentially an auxiliary theory. We
live in a flat universe with, possibly, a small positive cosmo-
logical constant, but the holographic constructions relevant
to the RHIC and Duke results involve quantum gravity with
at least one extra spatial direction and a negative cosmolog-
ical constant. Quantum gravity in such spacetimes seems to
capture key physics of the experimental nongravitational
systems of interest.

The AdS/CFT correspondence
The best understood example of holography is the so-called
AdS/CFT (anti–de Sitter/conformal field theory) correspon-
dence, formulated by three groups in the late 1990s (see ref-
erence 8 and the article by Igor Klebanov and Juan Malda-
cena, PHYSICS TODAY, January 2009, page 28). Anti–de Sitter
spacetimes are the negative-cosmological-constant analogue
of the more familiar Minkowski spacetime, the cosmological-
constant-free flat spacetime of special relativity. One conven-
ient feature of the (d + 1)- dimensional AdS spacetime is that
its volume (the “bulk”) has radial slices that are d-
 dimensional Minkowski spacetimes. The holographic dual-
ity works in part precisely because of that feature: Fields that
propagate in the bulk gravitational system have well-defined
expectation values at asymptotic infinity in the radial direc-
tion, often referred to as the boundary. The asymptotic values
behave like fields and couplings in the d- dimensional
Minkowski boundary spacetime, defining a self-contained
theory in its own right—the holographic dual theory. Amaz-
ingly, those dual theories are sometimes gauge theories,
 familiar to nuclear and particle physicists.

In perhaps the most celebrated case, the quantum grav-
ity theory lives in five dimensions, and the 4D holographic
dual is a Yang–Mills theory with a local scale invariance
known as conformal invariance (whence the “CFT” of the
correspondence). The Yang–Mills theory, in addition, is in-

variant with respect to supersymmetry (which pairs integer-
spin particles with half-integer-spin ones). The gauge sym-
metry of the theory is SU(Nc); as we will soon show, if the du-
ality is to be useful, Nc must be large. A combination of Nc
and the dimensionless Yang–Mills coupling gYM sets the so-
called ’t Hooft coupling of the theory, λ = g2

YMNc , which de-
termines the effective strength of interactions. Recall that
QCD is also a Yang–Mills theory, but in that case Nc = 3, cor-
responding to the three colors of quarks. Moreover, the mat-
ter content of QCD—the quarks—is different from the matter
content of the supersymmetric Yang–Mills theory. Nonethe-
less, calculations show that the differences between the two
theories are not so stark in the high-temperature regime.
Thus the supersymmetric Yang–Mills theory is potentially
relevant to the RHIC results.

To motivate the strong–weak coupling duality property
of AdS/CFT, we begin by asking what determines whether
quantum gravity calculations can be carried out perturba-
tively. The local strength of gravity in the bulk spacetime is
given by the spacetime curvature, which can be characterized
by a length scale lc. As with the radius of a circle, smaller lc
implies greater curvature. String theory, the relevant quan-
tum gravity theory, also has a natural length scale ls , which
is inversely related to the string tension. If ls ≪ lc , then weakly
coupled string theory is an appropriate tool for quantum
gravity calculations: Theorists compute the relevant quanti-
ties as a perturbative expansion in the small dimensionless
ratio ls /lc. 

The remarkable feature of the duality is that the ’t Hooft
coupling of the boundary Yang–Mills theory is inversely re-
lated to that ratio: λ ∝ (lc /ls)4. Thus the perturbative regime on
the gravity side corresponds to the strongly coupled regime
for the dual Yang–Mills theory. Conversely, if the ’t Hooft
coupling is small, then the dual gravitational theory requires
a fully nonperturbative string theory treatment, since strong-
curvature and string-coupling effects cannot be ignored.
Moreover, the string coupling and the Yang–Mills coupling
are proportional to each other. Given that the string coupling
is small in the perturbative regime, the ’t Hooft coupling can
be strong only if the Nc of the SU(Nc) gauge group is large.
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Gauge theories are invariant under gauge transformations, sym-
metry operations that can be implemented independently at
each point in space and time. The most familiar example of a
gauge transformation comes from classical electrodynamics, in
which the scalar (V ) and vector (A) potentials can be changed via
V → V − (1/c) ∂Λ/∂t, A → A + ∇Λ without altering the physical
electric and magnetic fields. In the transformation, Λ is some
arbitrary function, and c is the speed of light; for simplicity, we
don’t explicitly indicate the dependence of Λ on space and time.

The gauge transformation, with its derivatives, may look
unusual. Indeed, its form arises because the scalar and vector
potentials are parts of a geometric object called a connection. To
understand the significance of the connection, consider gauge
transformations in the context of quantum electrodynamics.
There, the electron–positron field ψ transforms according to 
the more normal-looking ψ → exp(iΛ)ψ. The equations of QED,
however, include derivatives of ψ, and as a result the phase
multi plication introduces derivatives of Λ that threaten to ruin
the invariance. The vector and scalar potentials save the day: The
derivative terms in their transformations cancel the potentially
ruinous terms that come from the phase multiplication.

Gauge transformations can be applied sequentially. In QED,
that would lead to the transformation ψ → exp(iΘ)exp(iΛ)ψ, with
two distinct gauge functions Λ and Θ. Clearly, the order in which
the phase multiplications are applied does not matter, either for
the field ψ or for the scalar and vector potentials; in the jargon of
the field, the QED gauge transformation is said to be abelian.

In general particle-physics scenarios, ψ represents a vector-
like collection of fields—a triplet of quarks or an octet of gluons,
for example—and the gauge transformation is realized as a
matrix multiplication ψ → Mψ. Symmetry again requires the
introduction of fields, whose transformations involve derivatives
of M. Matrix gauge transformations can be compounded, too,
but in general, the order does matter; the transformations are
nonabelian. Gauge theories built on nonabelian groups are
often called Yang–Mills theories.

In many examples from particle physics, M is an element of
the group SU(N). That is, it is an N × N matrix that is special (mean-
ing the determinant is one) and unitary (the matrix’s complex-
conjugate transpose is also its inverse). In the simpler QED case,
the phase multiplication may be viewed as a unitary 1 × 1 matrix,
so the gauge group appropriate to QED is U(1), which is abelian.

Here comes the SU(N )



There is a wonderful serendipity here. Holographic
 dualities were originally discovered in an effort to under-
stand the physics of strongly coupled gravity. Dual weakly
interacting gauge theories enabled string theorists to prove
the Bekenstein–Hawking entropy formula for a large class of
black holes, to give just one example. The dualities are now
being turned around so that perturbative-gravity techniques
can be employed in the service of studying nongravitational,
strongly coupled physics.

The limit to perfection
Lattice QCD has enabled the calculation of certain thermal
properties such as the equation of state, but the technique has
had great difficulty extracting transport properties. That is
because lattice QCD calculations employ a so-called Euclid-
ean time formalism. In that approach, a fixed time corre-
sponds to a definite temperature, and so explicit time evolu-
tion cannot be studied. Holographic approaches are not
limited in that way. For a thermal system, the dual gravity
theory has a black hole in the extra dimension, away from the
boundary. The black hole’s Hawking radiation is in thermal
equilibrium with the entire spacetime and hence with the
dual gauge theory defined at the boundary at infinity. Be-
cause of the nonzero temperature, the dual theory is neither
supersymmetric nor conformally invariant, which allows it
to better represent experimental systems of interest.

As discussed earlier, the shear viscosity η reflects inter-
action strength. Dividing η by the entropy density s of a sys-

tem gives a measure of the interaction per constituent that
better allows comparison across different systems at widely
different scales. The viscosity is proportional to both the
mean free time τ between collisions of a constituent particle
and the energy density ε of the system. The entropy density
is proportional to the particle number density n, so the ratio
η/s should be something like τE/kB, where E is the energy per
particle. The product τE, by Heisenberg’s uncertainty princi-
ple, is of order ħ or greater, and so the ratio η/s is set by ħ/kB,
with a dimensionless multiplier determined by the details of
the substance in question. Strong coupling tends to reduce τ,
so strongly coupled fluids will have smaller shear viscosity
than weakly coupled ones.

In 2005 Pavel Kovtun, Dam Son, and Andrei Starinets
(KSS) used the above dimensional argument, combined with
Heisenberg’s relation, to motivate the existence of a universal
lower bound on η/s that would be approached for strongly
coupled systems (see reference 9 and PHYSICS TODAY, May
2005, page 23). The idea grew from their observation (subse-
quently strengthened by studies from several groups) that, to
leading order, a variety of strongly coupled gauge theories
with known holographic duals yielded a strikingly small uni-
versal value for η/s. The key quantum-gravity computation
had been carried out earlier by Giuseppe Policastro, Son, and
Starinets:10 The calculation of how a disturbance propagates
from one place to another in the gauge theory may be recast
as a calculation in which gravitons from a point on the
boundary propagate in the higher-dimensional bulk theory,
scatter off a black hole, and return to another point on the
boundary (see figure 2). The scattering cross section is pro-
portional to the area of the black hole horizon, and, as Poli-
castro and colleagues showed, the viscosity is proportional
to the scattering cross section. According to the Bekenstein–
Hawking formula, the entropy is also proportional to the
horizon area, so in the ratio η/s, the horizon area cancels to
yield η/s = 1/4π · ħ/kB. That value holds for specific classes of
systems, but KSS conjectured it was a universal lower bound.

Ordinary substances like water, and even most specially
prepared laboratory fluids—liquid helium, for example—
have η/s ratios that lie well above the KSS value. But the RHIC
and Duke systems seem to have an η/s at most only a few
times higher than the KSS value and thus far below that of
all previously known laboratory systems.

The possibility of a fundamental lower bound on η/s led
to several fruitful discussions among physicists working in
traditionally disconnected areas and also helped focus di-
verse experimental efforts. This convergence of experimen-
tal and theoretical work is particularly exciting and, notably,
is the first dialog between string theorists and experimenters
to produce actual experimental results. In a sense, the theory
predicted the existence and properties of a class of fluids
with extremely low η/s, and experimenters are now finding
striking examples of such systems.

Questions of detail 
Placing a black hole in a 5D spacetime certainly does not
endow its dual 4D finite-temperature Yang–Mills theory with
the specific content of finite-temperature QCD. The dual the-
ory has no true quarks, and Nc must be large—not 3, as in
QCD. Clearly, theorists would be thrilled to find a gravita-
tional theory that is dual to QCD instead of to a Yang–Mills
cousin. However, considerable research effort suggests that
the goal will be extremely difficult to achieve. Even relaxing
the requirement that Nc be large means that calculations on
the string theory side are no longer tractable in general. So
the question arises as to why the systems that have been an-
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Figure 2. Holographic duality enables hydrodynamic calcu-
lations in a gauge theory to be recast as scattering calcula-
tions in a higher-dimensional spacetime. The plane to the
left represents 3D space, a slice of the 4D spacetime in which
the dual gauge theory resides. Motion perpendicular to that
plane is in an extra fifth dimension; gravity operates in the
bulk 5D spacetime. The plane on the right is a 3D black hole
horizon. The hard computation of how disturbances propa-
gate in the gauge theory’s 4D spacetime is equivalent to a
simpler-to-compute process in which a graviton (blue) scat-
ters off a black hole in the bulk spacetime.



alyzed share some properties with QCD. Is it simply an acci-
dent, or is it an encouraging sign of a profound connection,
despite differences in details?

The similarity of the experimentally and theoretically
determined viscosity-to-entropy ratios suggests that the sys-
tems under study are primarily controlled by the tempera-
ture; the microscopic details of the physics are less important.
In the strongly coupled hydrodynamic regime, the tempera-
ture determines the energy, pressure, speed of sound, and
even the viscous deviations from perfect-fluid behavior. On
the other hand, on the holographic dual side, the spacetime
geometry is entirely determined by the temperature, which
sets the size of the black hole. Further evidence that micro-
scopic details may not be so important comes from successes
in using the dual approach to compute qualitative features of
other observed RHIC physics—for example, jet quenching
and heavy-quark dynamics—and a qualitative agreement of
RHIC physics with that predicted by the lattice QCD equa-
tion of state.

Theorists have studied dualities involving various gauge
theories to better understand the sensitivity of the key results
to differences in detail among those theories. They have
learned, for example, that some theories have η/s smaller than
the conjectured KSS bound of 1/4π · ħ/kB. That value, there-
fore, should not be thought of as an absolute limit but rather
as a universal leading contribution to an expansion in inverse
’t Hooft coupling and 1/Nc. It may be a long while before theo -
rists find holographic duals of exact experimental systems,
so they are focusing on better understanding those physical
quantities, computable with currently accessible models, that
are not strongly sensitive to details. Perhaps that focus will
reveal a kind of universality that explains why the computa-
tions work so well.

Black holes are rather universal objects in the sense that
they are characterized by only a few parameters, such as
mass, charge, and angular momentum. Therefore, all gravi-
tational systems, and hence the various nongravitational the-
ories they define via holographic duality—from the ultracold
to the ultrahot—should have their thermal physics controlled
by the same basic black hole dynamics. If further experimen-
tal and theoretical work strengthens the connection of
strongly interacting systems to string theory, and if the uni-
versality proves robust, then physicists will have a powerful
set of concepts and tools with which to explore a whole new
class of experimentally accessible phenomena.
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