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Can one extract key properties of atomic nuclei by study-
ing the seemingly unrelated system of a few cold, interacting
atoms in a quantum gas? The answer is a resounding yes. The
reason for that unexpected connection, which links energies
spanning some 18 orders of magnitude, can be traced to uni-
versality in few-body physics, the focus of this article. In
some cases, studies of systems with just two, three, or four
atoms have even helped researchers identify fundamental as-
pects of a degenerate quantum gas having more than 100 000
particles.

Experimental studies of universality in nuclei are diffi-
cult because the nuclear force cannot easily be changed in
the laboratory. For cold-atom systems, however, there exists
a regime in which a key parameter, the scattering length, can
be readily manipulated. (The scattering length a is defined
in terms of the low-energy S-wave scattering phase shift δ
by a ≡ −limk→ 0 [tan δ]/k, where k is the wave number.) That
regime is characterized by a so-called Fano–Feshbach reso-
nance, also called a Feshbach resonance, at which the scat-
tering length diverges.1 Near such a resonance, an external
field, usually magnetic, can be used to dial in any desired
atom–atom interaction or scattering length. The tunable scat-
tering length, which dominates all other length scales, en-
ables an experimenter to undertake detailed investigations
of universality.

The universal properties of systems having short-range
interactions—be they among cold atoms or nucleons or mol-
ecules—connect in turn to the beautiful but mysterious effect
discovered by nuclear theorist Vitaly Efimov shortly after he
received his PhD in the Soviet Union in 1969.2 Within the past
four years, progress has erupted in exploring the Efimov ef-
fect and related phenomena through the manipulation of di-
lute atomic gases near a Fano–Feshbach resonance.

Early evidence and ideas
A striking example of universality arises for a short-range
two-body potential that is just short of binding two particles,
in which case the scattering length approaches negative in-
finity. Efimov’s astonishing and counterintuitive prediction
was that the three-body system would bind an infinite num-
ber of levels, even though the two-body system binds none.
The binding energies of the three-body states n converge geo-
metrically to zero: En = E0 exp(−2πn/s0), where s0 ≈ 1.0062378.
For large but finite values of ∣a∣, Efimov calculated the num-
ber of bound states to be of order Nb = (s0/π)ln(∣a∣/r0), where
r0 is the range of the two-body interaction. Despite early skep-
ticism, virtually all credible studies have ultimately con-
firmed Efimov’s predictions.3

Apparently simple systems can be dauntingly complex.
For an N-body system with only internal interactions, one
must solve a Schrödinger equation in at least 3N − 6 dimen-
sions, after eliminating trivial center-of-mass motion and
overall rotations. In the mid-1990s the computational tech-
nology began to mature for systems of three interacting par-
ticles; those involve a partial differential equation of only
three dimensions. But add just one more particle to the mix,
and the dimensionality jumps from 3 to 6. Given the expo-
nential or faster growth of difficulty with the number of di-
mensions, the steady growth in dimensionality presents a
stringent challenge.

As early as 1976, Ugo Fano discussed promising theoret-
ical avenues that might lead to an understanding of few-
 particle interactions in a qualitative and potentially quantita-
tive manner (see the article by Fano in PHYSICS TODAY,
September 1976, page 32). Those lines of attack had emerged
from an adiabatic hyperspherical coordinate representation
applied to two-electron dynamics by Joseph Macek.4 The first
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3b < 0, where the ith Efimov trimer state hits E = 0 and becomes unbound; i = 1, 2, . . . ∞ 

ai,k
4b < 0, where the kth four-body state (k = 1, 2) attached to the ith three-body Efimov state lies at E = 0

ai
3b,min > 0, the ith minimum expected in the three-body recombination rate

ai
3b,(2+1)b > 0, where the ith Efimov trimer crosses the energy of the dimer + atom threshold, E = −ħ2/ma2

ai,k
4b,dd > 0, where the kth four-body state (k = 1, 2) attached to the ith Efimov trimer crosses the dimer + dimer threshold, E = −2ħ2/ma2

ai
(3+1)b,dd > 0, where the ith Efimov trimer + atom threshold crosses the dimer + dimer threshold, E = −2ħ2/ma2

ai,1
Nb < 0, where the lowest N-body state built on the ith Efimov trimer crosses E = 0; vertical lines in figure 4
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step in the hyperspherical approach is to single out a special
collective coordinate of the system, namely, the hyperradius
R = (∑i miri

2/M)1/2. Here ri is the distance between the center of
mass and particle i having mass mi , and M is a convenient
normalizing mass. The square of the hyperradius is propor-
tional to the trace of the system’s moment-of-inertia tensor.

The essence of the method is to treat R as a parameter,
solve the fixed-R Schrödinger equation, and regard the eigen-
values Uυ(R) as adiabatic potential curves in the same spirit
as in the familiar Born–Oppenheimer approximation that has
produced so many insights in molecular physics. (In the
Born–Oppenheimer case, it is the nuclear positions that are
the originally fixed coordinates.) When the relevant nonadi-
abatic coupling matrices are included, the many-particle par-
tial differential equations reduce to a conceptually simpler
set of coupled ordinary differential equations in one dimen-
sion. Moreover, inspection of the potential curves immedi-
ately shows the loci of avoided crossings where adiabaticity
fails; those, in turn, indicate the energies and hyperradii at
which the system can transition from a channel described by
a given potential curve to a channel corresponding to a dif-
ferent curve. (In scattering theory, a channel refers to all of
the quantum numbers that identify entrance or exit products
from a collision.) 

Efimov’s groundbreaking work explored the three-body
system with short-range forces in the limit of a large hyper-
radius. Under those conditions, his dipole-type R−2 potential
produced the infinite spectrum of energy levels already men-
tioned. As the binding energies geometrically converge to
zero, the mean hyperradii expand, and by a related exponen-
tial factor: 〈R〉n = 〈R〉n−1 exp(π/s0).

Three’s a crowd
One key link, developed in the interim between Efimov’s
early predictions and ultracold-gas experiments conducted

within the past few years, connected his effect with the
process of three-body recombination,5 A + A + A → A2 + A.
That reaction dominates atom losses in most degenerate
quantum gases, but, as I will describe later, under some cir-
cumstances four-body processes can also contribute signifi-
cantly. In general, the atom density n in a homogeneous ther-
mal gas cloud is controlled by inelastic collision events
through the rate equation dn/dt = −L2n2 − L3n3 − L4n4, where t
is time, and LN is the appropriately averaged inelastic loss rate
associated with collisions of N bodies. In most gases studied
nowadays, experimental design minimizes two-body losses.
The usual result that the three-body term dominates loss can
then be expressed as L3 > nL4.

An understanding of the link between three-body re-
combination and universal physics began to emerge a decade
ago from quantitative theory and now seems to be on solid
footing.5 In particular, theoretical studies showed that by tun-
ing the atom–atom scattering length a to an appropriate, large
negative value, ai

3b, experimentalists should observe a strong
resonance in the three-body recombination rate. (The table on
page 40 reviews the notation for all the special scattering-
length values considered in this article.) Theoretical work
also predicted something of far greater potential interest for
quantum-gas experimenters: a series of recombination-rate
minima occurring at successive scattering lengths ai

3b,min. At
those values, losses in condensates or in cooling stages are
minimal. Moreover, the ratio of successive scattering lengths
corresponding to the minima is given by the Efimov factor
exp(π/s0) = 22.7.

Figure 1 depicts the current understanding of the reso-
nances and minima in the adiabatic hyperspherical picture.
At large negative scattering lengths, the three-body entrance
channel shows a barrier at long range (Fano called it a “mock
centrifugal barrier”) and, at short range, an attractive well
that can trap a three-body shape resonance (that is, a quasi-
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b Figure 1. Low-energy
recombination of
bosonic cesium. (a) The
numerically calculated
recombination rate for
Cs + Cs + Cs → Cs2 + Cs
plotted as a function of
the Cs–Cs scattering
length a measured in
Bohr radii. Clearly visi-
ble at a negative scat-
tering length is the first
Efimov resonance and,
at a = a1

3b,min > 0, the first
destructive interference
minimum. The qualita-
tively different phenom-
ena at large positive
and negative a follow
from the qualitatively

different nature of the reaction pathways in those regimes. (b) For negative a, a system with a small positive energy E (blue line)
must tunnel over a barrier into the red potential well located at hyperradius R ≪ ∣a∣. When the scattering length admits a quasi-
bound resonance beyond the barrier (horizontal red line), the tunneling rate is enhanced and the system can relax efficiently (blue
arrow) to the two-body channel represented by the black potential curve. (c) For positive a, two distinct paths allow the system to
transition to the two-body state at R ≈ a. In one path (yellow arrows), the system bounces off the red potential barrier and relaxes to
the two-body channel while R is increasing. In the second pathway (blue arrows), the system transitions to the two-body channel
while R is decreasing, and then the system rebounds off the black potential barrier. If the scattering length is tuned appropriately,
the two paths destructively interfere. (Adapted from ref. 18.)
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bound resonance) having the character of an Efimov state.
When the scattering length is tuned so that the shape-
 resonance energy (red line in figure 1b) lies close to the col-
lision energy (blue line), which is itself within tens of
nanokelvin of zero, tunneling through the barrier is strongly
enhanced and recombination can occur efficiently into
deeper two-body bound-state channels. On the other hand,
when the scattering length is large and positive, as in figure
1c, no potential barrier exists at asymptotic values of R, nor
does the potential include an inner well that could support
shape resonances. Instead, there is an avoided crossing of the
three-body entrance-channel potential curve with a potential
curve (black) whose asymptotic energy E = −ħ2/ma2 is that of
the highest-energy S-wave two-body bound state. Those fea-
tures are independent of the details of the particular system
of three identical bosons with short-range interactions and
hold more generally with some modifications in detail. 

The smoking gun
Before the Efimov effect was observed experimentally, a
number of independent and varied theoretical treatments
confirmed and extended the predictions discussed above.
Those studies certainly added significant confidence in
physicists’ growing understanding of universal phenomena
at large scattering length. Nevertheless, experimental evi-
dence was lacking until the breakthrough published in 2006
by Rudolf Grimm’s group in Innsbruck, Austria6 (see PHYSICS
TODAY, April 2006, page 18). Since then numerous groups
have observed clear-cut manifestations of universal physics
through the study of three-body recombination in ultracold
homonuclear and heteronuclear gases.7–10

The clearest evidence for universality in a system of
three low-energy bosons would be the observation of succes-
sive bound or resonant states separated by the Efimov factor
exp(−2π/s0) in energy or by exp(π/s0) in scattering length. The
first experimental evidence by the Innsbruck group in 2006
saw only one universal resonance, and the researchers’ inter-
pretation of the resonance as a reflection of Efimov’s discov-
eries relied on theoretical treatments. But in 2009 several ex-
periments managed to obtain completely convincing and
unambiguous evidence—smoking guns of universal physics.

At least three serious problems hamper experimental
studies of the universal regime of three-body interactions.
First, in order to see strong evidence of the predicted scaling
in energy and scattering length, an experiment must be able
to treat a range of scattering lengths over a factor of at least
22.7, and more likely (22.7)2 or even (22.7)3. Second, the tem-
perature must be extremely low—typically kBT ≲ ħ2/ma2—if
delicate resonance and minimum features are to be visible
at large-magnitude scattering lengths. Third, three-body re-
combination rates scale overall as a4. Thus, as an experimen-
tal group varies the scattering length over a factor of 500 or
more, the dynamic range of loss rates to which its experi-
ment must be sensitive could easily cover 8–10 orders of
magnitude. 

Overcoming those difficulties is no small feat, but exper-
iments worldwide rose to the task in 2009. Italian and Israeli
teams produced clear evidence of three-body and four-body
universality,8 and most recently, Randall Hulet’s group at Rice
University measured atom losses in a dilute gas over a re-
markable dynamic range, conclusively demonstrating sev-
eral aspects of universality.10 Specifically, as shown in figure 2,
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Figure 2. Universality in a gas of bosonic lithium-7. Shown here is an experimental loss spectrum as a function of the atom–
atom scattering length a measured in Bohr radii. The thick, solid black curve is a fit to the analytic three-body recombination
theory developed by Eric Braaten and Hans-Werner Hammer;5 the expected overall a4 scaling is indicated by the thinner gray
curve. Green curves show the theoretically derived energies (in arbitrary units) of the first and second Efimov levels. Visible in
the positive-a region to the left are two out of the predicted infinite number of recombination-loss minima. Their scattering
lengths, a1

3b,min at 119 Bohr radii and a2
3b,min at 2676 Bohr radii, have a ratio of 22.5, which is within experimental error of the pre-

dicted universal value of 22.7. At negative scattering lengths, the two evident three-body loss maxima are at a1
3b = −298 Bohr

radii and a2
3b = −6301 Bohr radii. Their ratio of 21.1 is again consistent with the predicted ratio of 22.7. Also visible is a resonant

loss feature attributed to four-body recombination, at a1,1
4b = −120 Bohr radii. The ratio of that scattering length to the length cor-

responding to the nearby three-body resonance, a1,1
4b/a1

3b = 0.40, is in agreement with predictions from universal four-body re-
combination theory.13 The remaining scattering lengths indicated in the figure are defined in the table on page 40. (Adapted
from ref. 10.)
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in their experiment with bosonic lithium atoms near a Fano–
Feshbach resonance, they could clearly identify both the cat-
astrophic high-loss-rate Efimov resonances at large negative
a and the degenerate-gas-friendly interference minima at
large positive a. Moreover, they covered a sufficient range in
a to confirm, to within about 10% uncertainty, the predicted
scaling factor of 22.7 between successive features for both
positive and negative a.

Two, three, four, . . . Avogadro?
For two attracting particles in three dimensions, the potential
depth must be increased to a certain minimum value in order
to barely bind the particles into an S-wave bound state. That
is the point at which the two-body scattering length diverges.
There exists, though, a very large and negative a for which
an Efimov trimer state becomes bound even though no two-
body states are bound. The reason such binding is possible is
that the attractive forces act on three pairs of atoms rather
than just one pair. If a is made less negative than the value at
which the Efimov trimer is bound, it eventually lands at a
value for which a four-body state becomes bound. Similarly,
there exist values of the scattering length at which 5, 6, 7, or
more bodies become bound even though no smaller subsys-
tems have sufficiently strong attraction to bind; the maxi-
mum number of bodies that can bind, if any, is currently un-
known. Two recent investigations have studied the sequence

of two-body scattering lengths at which successive N-boson
Borromean systems first become bound. (“Borromean” refers
to the famous three-ring system that is linked in such a way
that rupturing any ring causes all three rings to separate.)
One study was by Gabriel Hanna and Doerte Blume at Wash-
ington State University, and the other by JILA theorist Javier
von Stecher.11

Within the past year, an unexpected theoretical develop-
ment has helped to strengthen the evidence that the reso-
nance observed in 2006 by the Innsbruck group indeed has
an Efimov character. The story begins with calculations by
the University of Washington’s Lucas Platter and the Univer-
sity of Bonn’s Hans-Werner Hammer, who investigated the
behavior of four bosonic particles in the universality limit in
which the two-body scattering length is large enough to be
the dominant length scale in the problem. They extended ex-
isting theoretical methods and computed a few energy levels
of four identical bosonic particles with short-range interac-
tions.12 Their evidence encouraged them to conjecture that a
pair of four-body bound states might reside below and in
some sense attached to each three-body Efimov state. 

A subsequent independent thrust by JILA theorists von
Stecher, Jose D’Incao, and their collaborators developed
methods that enabled them to calculate the hyperspherical
potential curves and relevant couplings for such four-body
systems.13,14 Their calculations supported and extended the
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Figure 3. Universal relations
among systems with two, three, and

four bosons. Energy in natural
units (m is the particle mass, r0

is the range of the short-
 distance potential between a
pair of bosons) is plotted
against the inverse boson–
boson rescaled scattering

length (r0/a)1/5. The binding ener-
gies for one or two dimers appear

as nearly straight red lines angling
toward the lower right-hand side of

the figure. At zero on the horizontal axis,
the scattering length diverges and there exist

an infinite number of bound Efimov trimer states.
Near zero the number is large but finite. Three Efi-

mov states are shown as green curves. Between each
pair of Efimov trimers (and below the lowest indicated Efi-

mov trimer) are two four-body states that may be associated
with the higher trimer. The enlarged inset to the left shows 
a value of a = ai

3b at which the ith Efimov trimer becomes 
unbound and emerges as a resonance in the three-body re-
combination continuum. At slightly less negative values of 
a are a = ai,1

4b and a = ai,2
4b, at which the associated four-body

states become resonances in the four-body recombination
continuum. The enlarged inset to the right shows other 
interesting regions of positive scattering length, where the
three-body and four-body binding energies merge with the

dimer + dimer binding energy and thus the three- and four-body states show up as resonances in dimer–dimer scattering. For
example, when the scattering length is a = ai

(3+1)b,dd, the green and lower red curves intersect, indicating that the dimer + dimer
and atom + trimer binding energies are equal; the corresponding exchange reaction should exhibit a zero-energy resonance.
Likewise, at a = ai

3b,(2+1)b, the Efimov trimer binding energy merges with that of the dimer + atom, and the atom–dimer scattering
length diverges. Several ratios among the scattering lengths have been predicted to be universal.13 On the negative a side, 
theory indicates ai,1

4b/ai
3b = 0.43 and ai,2

4b/ai
3b = 0.90. On the positive side, the predicted universal ratios are ai,1

4b,dd/ai
3b,(2+1)b = 2.37,

ai,2
4b,dd/ai

3b,(2+1)b = 6.6, and ai
(3+1)b,dd/ai

3b,(2+1)b = 6.73. (Courtesy of Jose D’Incao.)
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Hammer–Platter conjecture and identified universal proper-
ties associated with the values of the two-body scattering
lengths at which the conjectured four-body states would first
become bound as a is made increasingly negative. The theo-
rists predicted universal ratios between those two scattering
lengths, ai,1

4b and ai,2
4b, and the scattering length ai

3b at which the
corresponding Efimov trimer first becomes bound:
ai,1

4b/ai
3b = 0.43 and ai,2

4b/ai
3b = 0.90. Figure 3 graphically illustrates

the meaning of the special scattering lengths just discussed
and shows some of the universal properties connecting 
two-, three-, and four-body states.

Reinspection of the original Innsbruck data showed that
in addition to the prominent three-body Efimov resonance at
a1

3b = −850 Bohr radii that had justified the 2006 publication, a
broad, weaker resonance feature was visible at a scattering
length near a = −370 Bohr radii. The agreement of its position
with the predicted universal four-body resonance location
suggested that this hitherto uninterpreted feature was in fact
associated with four-body loss and represented the lower-
energy tetramer resonance state. A faint hint even existed in
the data that a very small second bump at a = −770 Bohr radii
might be associated with the upper-energy tetramer reso-
nance state.13

The past year has seen quantitative calculations of the
four-body recombination loss rate in the universal regime as
an application of more general developments in the theory of
N-body recombination.15 Applied to systems of four identical
bosons, the calculations, enabled by previously determined
hyperspherical potential curves and couplings, present
strong evidence that the 2006 Innsbruck experiment had in-
deed unknowingly observed universal four-body reso-
nances. The four-body nature of those loss features was sub-
sequently verified in a careful experiment published in 2009
by the Innsbruck collaboration, led this time by Francesca
Ferlaino.7 Subsequent experiments in 2009 have provided ad-
ditional confirmation by revealing several universal four-
body features,8,10 one example of which is clearly visible as
a1,1

4b in the Hulet group’s experimental measurement shown in
figure 2.

The theoretical and experimental research just described
represents the first-ever calculation and observation of an in-
elastic collision involving four particles that were initially all
free; it is a fundamental advance for collision physics. It also

confirms theoretical conclusions that the nonuniversal as-
pects of those four-body systems are fixed using only a single
three-body parameter, κ1, that can be viewed as setting the
energy of the lowest Efimov state. No additional nonuniver-
sal four-body parameter is needed. And at negative scatter-
ing lengths, as figure 4 demonstrates, no further nonuniver-
sal parameter appears needed to describe the energy
spectrum of universal pentamers, hexamers, and so on, all
the way—presumably—to Avogadro’s number and beyond.
Thus the many-body gas should display a tremendously rich
variety of phases in the universality range of large negative
scattering lengths. The many-body Hamiltonian implied by
the theoretical development of the past year is now ripe for
further investigation.

Outlook
As a meeting ground for theorists of widely disparate spe-
cializations, few-body physics illustrates the value of
strengthening interactions among all varieties of physicist.
Not many modern research topics have brought together spe-
cialists in such varied fields as nuclear, atomic and molecular,
condensed-matter, and high-energy physics. But such multi-
disciplinary topics are often among the most interesting and
lively. Although experiments still reside predominantly in
the domain of ultracold atomic gases, theorists from numer-
ous fields, with their different perspectives and methods, are
adding insights about universal few-body physics.

Fermionic atoms have been one of the most active areas
of study in ultracold quantum gases during the past few
years. That attention is partly because of their importance for
understanding the BCS–BEC crossover in condensed-matter
systems (see the article by Carlos Sá de Melo in PHYSICS
TODAY, October 2008, page 45), but it is also because of inter-
est in how fermions change the behavior of few-body sys-
tems. For instance, unlike bosons, three identical fermions in
the same internal spin state have no Efimov effect. That’s not
surprising since the Pauli principle guarantees that they have
no S-wave scattering at all. Three equal-mass fermions, all in
different spin states, are not subject to Pauli blocking and can
exhibit the richness of universal physics. Recent experiments
have shown evidence of universality in three-body loss rates
in a fermionic lithium gas.9 Theoretical studies have ac-
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scattering lengths at which N-body systems
become unbound. According to von Stecher
and colleagues, the ratios of those scattering
lengths are universal, applicable to any system
of identical bosons. For example, a five-body
recombination resonance should be observed
at a scattering length equal to a = 0.24 a1

3b.
(Adapted from J. von Stecher, ref. 11.)



counted for some features, but discrepancies warrant further
investigation.

Three fermions of equal mass distributed among two dif-
ferent spin states exhibit no Efimov effect in three dimen-
sions. But for that few-body system, Dmitri Petrov (Univer-
sité Paris–Sud) and collaborators made a vital theoretical
contribution.16 They proved that as the positive scattering
length a between the opposite-spin fermions grows larger,
the inelastic three-body and four-body collisions become ever
more strongly suppressed. Their result has been approxi-
mately confirmed in other work,14 but differences in theoret-
ical details remain to be resolved.

The recent convergence of theoretical and experimental
progress in universal few-body systems has sparked consid-
erable excitement. Many crucial questions remain to be un-
derstood, of course, notably the connection between univer-
sal physics at large positive a and at large negative a. The
experiments in 2009 bearing on that question are still not in
full agreement with each other.

An even richer test of universality could ensue for het-
eronuclear trimers like 133Cs-133Cs-6Li, where the scaling factor
between successive universal features in a changes from 22.7 to
4.88.17 Compared with systems with identical atoms, such a het-
erogeneous system should exhibit many more universal fea-
tures at both positive and negative a. The recent explosion of
interest in few-body systems has been accompanied by an en-
hancement of experimental and theoretical capabilities. Those
advances appear poised to further increase the breadth of in-
sights emerging from studies of a few interacting particles.

I gratefully acknowledge extensive discussions and a continuing 
collaboration with Jose D’Incao and also appreciate prepublication
access to preprints by Randy Hulet’s experimental group and by Javier
von Stecher.
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