spot at the far ear? One would think so,
if the near-ear level is a strongly mono-
tonic function of direction—and the
hearer has already acquired some sense
of the absolute loudness of the tones
from the experiment’s repeated trials.

The measured far- and near-ear lev-
els are shown in figure 2c for the same
listener as in 2b. Clearly, the shape of his
ILD curve is determined mostly by his
far-ear levels. The 6 dependence of his
near-ear level is weak and erratic. So it
could do little to resolve the angular
ambiguity in the far-ear levels.

The green curve in figure 2c shows
the near-ear levels predicted by the
spherical-head model. That calculated
angular dependence is indeed mono-
tonic, but it rises only a meager 3 dB
from 0° to 90°. By contrast, two of the
five subjects had strong monotonic
near-ear rises of about 10 dB, and they
consistently had the best test scores. But

like the others, they fell afoul of the ILD
ambiguity more often than not, even
when the separate single-ear levels
could, in principle, have resolved it.
Finally, the team investigated the ef-
fects of timing cues added to the test
tones. In one experiment, they imposed
a 100-Hz amplitude modulation on the
pure 1500-Hz tones. And in another ex-
periment, they replaced the pure tones
by spiky narrow-band noise centered
on 1500 Hz. In both experiments, al-
most all the subjects did very well. With
resolvable and unambiguous interaural
timing differences now at their dis-
posal, they seem to have largely ig-
nored the misleading ILDs.
Interestingly, the one striking excep-
tion was one of the two subjects with
the strongest near-ear monotonic level
rises and the best scores in the earlier
experiments. He gained nothing from
the timing cues and continued to be

misled by the ILDs. It’s as if his acoustic-
level perception thought itself too good
to be ignored, even in the presence of
more reliable timing information.

That last result supports the idea,
first suggested by experiments in the
1970s, that when conflicting localiza-
tion cues arrive at a central processor in
the nervous system, different hearers
will weight them quite differently.
“This  idiosyncratic = unconscious
weighting is not necessarily hard-wired
in early childhood,” says Hartmann.
“But failed attempts at retraining in
those old experiments, as in our own,
indicate that such things are very resis-
tant to change.”

Bertram Schwarzschild
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Holograms tie optical vortices in knots

Using techniques from mathematics and optical wavefront engineering, researchers demonstrate that
lines of zero intensity in a light beam can be shaped into links and loops of arbitrary topology.

What's the physical significance of
a knot? William Thomson (who later
became Lord Kelvin) must have asked
himself that question in 1867 when he
proposed his “vortex atom” hypothe-
sis—the idea that different knotted con-
figurations of swirling vortex lines in
the ether are manifest in nature as dif-
ferent atoms. Earlier that year he’d wit-
nessed Peter Guthrie Tait’s intriguing
experiments on smoke rings. And

based on earlier work by Hermann von
Helmholtz, he knew that lines of vortic-
ity are topologically conserved quanti-
ties. The closed loop and knotted con-
figurations Thomson envisioned would
thus be discrete and immutable —ideal
traits for a theory of atoms.

Although initially skeptical, Tait
came to believe that one could account
for the rich variety of atoms in the peri-
odic table by systematically building a
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classification system for all types of
knots. For the catalog he produced, Tait
is now viewed as the father of knot the-
ory. Thomson, for his part, had to aban-
don the vortex atom hypothesis. Ironi-
cally, though, it wasn't due to the
nonexistence of the luminiferous ether —
the 19th century’s perfect fluid—but to
an inability to analytically prove the
temporal stability of a vortex knot.

Still, the subsequent history of

Figure 1. Speckleghetti. When coherent light from a laser scatters off a rough surface, it evinces a mottled speckle pattern of light
and dark spots on that surface. The interference pattern is not restricted to a two-dimensional plane, though. In this numerical
simulation of 625 randomly superposed plane waves propagating from left to right, points of perfectly destructive interference in
the 2D plane transverse to the beam extend into tangled lines (red) and loops (white), known as optical vortices, in the 3D volume

of a light beam. (Adapted from ref. 2.)
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Figure 2. Constructing an isolated trefoil knot out of vortex lines in an optical field. (a) In cylindrical

geometry it's straightforward to devise a complex-valued function that prescribes where vortex lines,
drawn here as two strands, should reside as a function of cylinder height as the strands wind around
each other. (b) The braid becomes a knotted loop when the cylinder is topologically mapped into a
torus, folding the black loops at the top and bottom onto each other. (c) One can experimentally embed
the “knot” function in an optical field by sending a laser beam through a diffractive hologram that shapes the beam’s destructive
interference pattern. One can then map out the knot in space by measuring where the phases (shown as different colors in this
cross section) become singularities (red). (Adapted from ref. 1. Panel ¢ courtesy of Mark Dennis.)

physics is filled with examples of sys-
tems—among them cold turbulent su-
perfluids, hot magnetized plasmas, and
cosmic strings in the evolving uni-
verse —in which the knottedness of vor-
tex lines is thought to play a prominent
role. In their efforts over the past few
years to quantify and understand the
shared topological properties of such
disparate systems, Mark Dennis (Uni-
versity of Bristol), Miles Padgett (Uni-
versity of Glasgow), and their UK col-
leagues have been exploring the
topology of yet another system: a beam
of light. The researchers have now
demonstrated, using a sophisticated
holographic-grating scheme, that the
dark threads in a complex optical field
can be shaped into loops, linked loops,
and knots of arbitrary topology.! The
trick lay in finding the exotic solutions
to Maxwell’s equations—or, more pre-
cisely, the paraxial wave equation—that
do the job.

Speckle patterns

The physics of scattered waves under-
lies the achievement. When three or
more optical waves interfere in space,
complete destructive interference oc-
curs along nodal lines. At those places,
known as optical vortices or phase sin-
gularities, the light intensity is zero and
the phase undefined. Circling them, the
phase increases or decreases by 2.

In a three-dimensional light field —
such as laser speckle, observed when
coherent light scatters from a rough sur-
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face—the nodal lines can form the sort
of complicated tangle shown in figure 1.
The numerical simulations of speckle
patterns that Padgett, his graduate stu-
dent Kevin O’Holleran, and Dennis
made by superposing random plane
waves reveal a complex electromag-
netic field marked by a network of
continuous and looped optical vortices
that thread the entire volume of the
light field.

From the simulation data, the re-
searchers mapped the distribution of
topological features and identified vor-
tex loops that were threaded or un-
threaded by vortex lines and loops that
were linked with other loops. Not sur-
prisingly, larger loops were more likely
to be linked or threaded than smaller
loops.? Earlier experiments in which a
frosted glass screen was placed in front
of a helium-neon laser beam bore sim-
ilar results.®> Although links between
two loops were found occasionally, no
knots appeared in either real laser
speckle or the simulations of random
superpositions, probably because the
chance of their formation is so low.

Designer knots

In 2001, well before the speckle studies,
Dennis and his then thesis adviser
Michael Berry predicted that vortex
knots—or “knotted nothings,” as they
dubbed them—could be artificially
manufactured using the superposition
of a few laser beams with properly de-
signed intensities and phases. The trou-

ble with an early prescription they con-
ceived was that the knots it created
would be inextricably connected to in-
finitely long vortex lines and loops in
the system. The theoretical challenge
was thus to construct a solution to the
time-independent paraxial wave equa-
tion—the small-angle limit of the gen-
eral wave equation—that specifies a
scalar field containing nothing but the
desired knot. The experimental chal-
lenge, in turn, was to imprint that solu-
tion onto an actual light wave.

Wrestling with the theoretical issues
last year, Dennis and his student Robert
King experienced a revelation. The pair
realized they could exploit a mathemat-
ical operation known as Milnor map-
ping, which transforms a complex-
valued scalar function that’s simple to
construct but doesn’t contain a knot into
a more complicated function that does.
Figure 2 outlines the idea. To build a tre-
foil knot, for instance, they devised a
function that describes a periodic
braid—two nodal lines that spiral
around each other up or down a cylin-
der. Under Milnor mapping, the top
and bottom of the cylinder bend around
to meet each other, so that the braid’s
two lines are spliced into a single knot-
ted loop residing in a torus.

The lines cross three times in a trefoil
knot, but more complicated topologies
readily emerge by increasing the lines’
crossing number or altering the trajec-
tory they take—from circular to figure-8,
say—as they’re braided. The technique
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is powerful: In 1923 topologist James
Waddell Alexander proved that braid-
ing yields every type of knot.

To experimentally create the scalar
“knot” field, Padgett, along with stu-
dents O’Holleran and Barry Jack, used
a diffractive hologram as a spatial light
modulator. The hologram, essentially
a computer-controlled liquid-crystal
film, generates the appropriate interfer-
ence pattern, pixel by pixel, across an
incoming laser beam’s profile. The light
propagating from the hologram then
has a phase pattern determined by the
shape of its grating lines and an inten-
sity determined by their contrast.

Typically, the dynamic range of in-
tensity in the theoretically calculated
knot cannot be achieved experimentally
because of technical limitations of the
hologram. So an iterative procedure
that incrementally lowers the required
contrast while preserving the knot was
devised to optimize the hologram’s
design.

Figure 2c shows the experimental
trefoil knot, made evident by mapping
the optical field’s phase distribution. In
practice, the Glasgow team interfero-
metrically measured the various
phases, represented by different colors,
across about 100 cross sections of the
beam. The phase singularities, points
where the colors meet in each cross sec-

tion, were then stitched together into
lines that make up the knot.

Other waves, other knots

As linear solutions to a time-indepen-
dent wave equation in free space, the
vortex-knot patterns are stable and
static. But there also exist exotic time-
dependent solutions of Maxwell’s equa-
tions that describe knotted structures.
Two years ago physicists William Irvine
(New York University) and Dirk
Bouwmeester (University of California,
Santa Barbara) studied solutions, based
on a topological construction known as
a Hopf fibration, in which all electric
and magnetic field lines are closed
loops and any two electric or magnetic
field lines can be linked and knotted.*

Because they’re scalar, vortices are
relatively easy to manipulate using
holograms. In contrast, Irvine and
Bouwmeester’s field-line solutions
have the vector character of the electric
and magnetic fields built into them,
presenting the experimental challenge
of dynamically measuring their vectors
in 3D space.

Knot theory has already influenced
particular areas of physics—most no-
tably topological quantum computing
(see the article by Sankar Das Sarma,
Michael Freedman, and Chetan Nayak
in PHYSICS TODAY, July 2006, page 32).

The exquisite control that researchers
can now exert to knot optical fields may
catalyze other applications. The light
around optical vortices has orbital an-
gular momentum and thus can exert a
torque, which has been widely ex-
ploited in ringlike optical traps, for ex-
ample (see the article by Padgett, Jo-
hannes Courtial, and Les Allen in
PHYSICS TODAY, May 2004, page 35).
Padgett speculates that the rarity and
sensitivity of optical knots within scat-
tered light may even form the basis for
a new kind of molecular sensor.
Applications aside, Irvine finds them
fascinating examples of the close con-
nection between geometry and
Maxwell’s equations. “I can’t say
whether knots tied in fields are impor-
tant physical objects or not,” he says. “It
probably depends on what exactly is
tied up. But for me, they’re curious,
beautiful, and hard to resist.”
Mark Wilson

References

1. M. R. Dennis, R. P. King, B. Jack, K.
O’Holleran, M. ]J. Padgett, Nat. Phys. 6,
118 (2010).

2. K. O’'Holleran, M. R. Dennis, M. J. Pad-
gett, Phys. Rev. Lett. 102, 143902 (2009).

3. K. O'Holleran, M. R. Dennis, F. Floss-
mann, M. J. Padgett, Phys. Rev. Lett. 100,
053902 (2008).

4. W. T. M. Irvine, D. Bouwmeester, Nat.
Phys. 4, 716 (2008).

Model sheds light on the language of color

The process by which human societies collectively decide which segments of the visible spectrum get
their own names can be studied by computer simulation.

Speakers of the same language
generally agree whether two hues are
different shades of the same color, in the
sense that reddish orange and yellow-
ish orange are both orange, or whether
they are entirely different colors. And
although speakers of different lan-
guages (especially pairs of languages
whose speakers don’t interact) often
disagree about what constitutes “the
same color,” the disagreement isn't as
great as would be expected by chance.
Statistical analysis of the World Color
Survey’s data set—a collection of color
categories in 110 languages from nonin-
dustrial populations—found that the
languages clustered together in color
space to a greater degree than did sets
of randomly generated categories.!
Researchers have used several com-
putational approaches to understand
how languages’ color categories de-
velop. Among them is the work of An-
drea Baronchelli, a physicist at the Poly-
technic University of Catalonia in
Barcelona, Spain, and his collaborators,
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(a) Two simulated non-
interacting populations par-
tition the visible spectrum
into color categories in dif-
ferent ways. (b) The just
noticeable difference func-
tion represents the wave-
length resolution of human
vision. (Adapted from ref. 3.)
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