obituaries

To notify the community about a colleague's death, subscribers can visit http://www.physicstoday.org/obits, where they can submit obituaries (up to 750 words), comments, and reminiscences. Each month recently posted material will be summarized here, in print. Select online obituaries will later appear in print.

Geoffrey Ronald Burbidge

Geoffrey Ronald Burbidge died in La Jolla, California, on 26 January 2010 after a prolonged illness. Although physically debilitated for many months, Geoff retained the mental and intellectual sharpness that had been so effective in the critical appraisal of his field: astrophysics and cosmology.

Geoff was born in the small English market town of Chipping Norton on 24 September 1925. At Chipping Norton Grammar School, he excelled in history and mathematics, was a voracious reader of English novels and plays, and counted cycling and tennis among his recreations. He later got a scholarship to study at Bristol University. Among his family of well-to-do partners in a building firm, he was the first member to attend a university.

In the mid 1940s Bristol was well known for its physics department, with stalwarts such as Arthur Tyndall, Nevill Mott, Cecil Powell, and Giuseppe Occhialini for inspiration. Geoff ended up with an honors degree in physics in 1946, and after World War II he took a position in a ballistics laboratory. His work on explosives and guns taught him to appreciate physics as a fascinating field, and he decided to enroll as a graduate student in physics. Because of his excellent performance as an undergraduate, he had no trouble getting a scholarship to University College London. He decided to work with Harry Massey in the mathematics department on problems in quantum electrodynamics, a hot subject at the time. To interact with a more dynamic group in the field, Massey recommended that Geoff visit the University of Cambridge regularly. He did so, but he found that the Cambridge colloquia were much more mathematically than physically oriented. He got his PhD in theoretical physics in 1950.

It was while at University College London that Geoff met and married Margaret Peachey, an astronomer and assistant director of the University of London Observatory. Perhaps that event and the ongoing developments in astronomy gradually oriented Geoff

Geoffrey Ronald Burbidge

away from particle physics and toward astrophysics. In 1951 he and Margaret sailed for the US for their respective assignments; Geoff had been awarded an Agassiz Fellowship to work at the Harvard College Observatory in Massachusetts. In a 2007 article in the Annual Review of Astronomy and Astrophysics, Geoff recounted how his US visa was delayed because the words "hydrogen" and "helium" appeared in his 1950 paper entitled "Hydrogen and Helium Line Intensities in Some Be Stars," which apparently aroused some suspicion during the McCarthy era.

Upon his return to the UK in 1953, Geoff had a rather uncomfortable period as a postdoc in Martin Ryle's radio astronomy laboratory at Cambridge. Ryle demanded from his colleagues complete loyalty to his views, which Geoff, with his characteristically independent mind, did not offer. So he was treated as an outsider. He explained in the 2007 Annual Review article how the radio group was secretive about its findings and future steps. Once Geoff was asked to accompany the loyalists to Oxford University for the Halley Lecture, where Ryle was to announce his new findings on radio source counts, without Geoff's being told what the contents were. He was so angry at that mistrust that he refused to go.

It was in the mid 1950s that Geoff and Margaret began to collaborate with William Fowler and Fred Hoyle on the problem of how chemical elements are formed. The quartet, known collectively as B2FH, in due course delivered its magnum opus in an extensive paper in Reviews of Modern Physics in 1957. It describes how stars at different stages of their evolution, including the death of more massive ones in supernovae, produce practically all observed chemical elements. The work has been hailed as a triumph of applications of nuclear physics, statistical mechanics, and stellar structure to solve a deep problem in astrophysics.

After spending some years at Caltech and the Yerkes Observatory, both the Burbidges were offered senior appointments at the University of California, San Diego in 1962. Except for a few years at Tucson, Arizona, where he was the director of the Kitt Peak National Observatory, Geoff remained at UCSD. With his independent mindset, he brought many changes to the observatory, some of which were liked and some not. Perhaps because of the latter, he lost his job as director in a major reorganization of the observatories of which Kitt Peak was a part.

For much of his career, Geoff worked in high-energy astrophysics, pointing out the energy problem inherent in conventional theories of radio sources, quasars, and active galactic nuclei. Working with Hoyle he steadily moved

Recently posted death notices at http://www.physicstoday.org/obits:

David H. Blackwell

24 April 1919 - 8 July 2010

William Callahan

5 September 1931 - 5 July 2010

Dorothee E. Krahn

5 June 1922 - 26 June 2010

Brian Flowers

13 September 1924 – 25 June 2010

Arnold Kramish

6 June 1923 - 15 June 2010

Vladimir Arnold

12 June 1937 - 3 June 2010

Harry Edward Peters

1922 - 19 May 2010

Robert Damburg

4 April 1930 - 7 May 2010

Michael Stephen Feld

11 November 1940 – 10 April 2010

David Halliday

3 March 1916 - 2 April 2010

George Curriden Baldwin

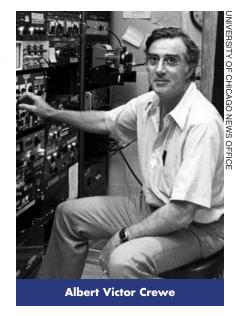
5 May 1917 - 23 January 2010

Stavros Fallieros

6 July 1927 – 21 December 2009

toward the radical view that not all redshifts, especially of quasars, arise from expansion of the universe. Over the years he came to appreciate the controversial work of Halton Arp, who indicated the possible existence of anomalous redshifts. Although that point of view gradually isolated Geoff from the overall astronomical community, he kept an open mind. For more than 30 years he successfully edited the Annual Review of Astronomy and Astrophysics. Not even his strongest critic in the redshift controversy could have accused him of lacking the fairness required of the editor.

Geoff was a much-traveled person. At international conferences he could be found in a front seat apparently dozing but remarkably alert when it came to asking questions of the speaker. India was a favorite haunt of his, and he was in contact with many Indian astronomers. He was fond of traveling in chauffeur-driven cars and even made the trip from Mumbai to Bangalore. Those who have seen the driving on Indian highways would appreciate the risk he was taking. But then he was an old radical who cherished risky paths.


> Jayant V. Narlikar Inter-University Centre for Astronomy and Astrophysics Pune, India

Albert Victor

The remarkably productive life of physicist Albert Victor Crewe ended on 18 November 2009 in his home in Dune Acres, Indiana, when he lost his long struggle with Parkinson's disease. Crewe's invention of the scanning transmission electron microscope, or STEM, allowed scientists to resolve individual atoms.

Crewe was born in Bradford, UK, on 18 February 1927. He grew up during World War II in a blue-collar community. The first in his family to attend high school, he won a scholarship to the University of Liverpool, where he received a baccalaureate in physics. Because he had passed the scholarship examination with high honors, he was able to continue at the university as a graduate student. At the age of 24 he was hired by the university as an instructor. A year later, in 1951, he received a PhD in physics.

At Liverpool, Crewe worked under Herbert Skinner, head of a project to build a synchrocyclotron accelerator. Skinner gave Crewe the task of extracting the accelerated proton beam from the machine, a difficult feat of great potential value for the accelerators then

coming into operation. Crewe demonstrated for the first time the successful operation of the regenerative (resonant) extraction system proposed earlier at the University of Chicago by James Tuck and one of us (Teng). In 1955 Crewe was invited to Chicago as a visiting research associate to extract the beam from Chicago's newly commissioned synchrocyclotron. A year later, after successfully extracting the beam, he was appointed by the university as a tenure-track assistant professor.

At the time, Chicago scientists had a strong interest in the success of an accelerator project proposed by Argonne National Laboratory, and Crewe was among a group of university colleagues making frequent visits to Argonne to help with the design, especially with regard to the experimental areas.

In 1958 the Atomic Energy Commission approved the construction of the proposed 12.5-GeV Zero Gradient Synchrotron and Crewe's appointment as director of Argonne's particle accelerator division to head the ZGS project. During his tenure, Crewe contributed greatly to the eventual success of the project.

In 1961, when Argonne director Norman Hilberry retired, Crewe, then a 34year-old associate professor, accepted an offer to become the third director of the 5000-employee facility. His task was made difficult by Midwest universities demanding that their own institutions have a part in setting policies for the laboratory. A management scheme intended to meet those demands was a tripartite contract for which in addition to the current operating contractor, the University of Chicago, policymaking and oversight authority for the lab's

