

Auralization of spaces

Michael Vorländer

Being able to determine and re-create what a room sounds like is useful not only in concert halls and opera houses but also in classrooms, houses, and virtual reality.

Michael Vorländer directs the Institute of Technical Acoustics at RWTH Aachen University in Aachen, Germany.

In physics and other sciences, numerical simulation is an indispensable tool for describing and understanding complex phenomena. Examples abound, particularly in particle and wave propagation and the study of spatial and temporal evolution, such as of irradiation or pollution. Visualization is a familiar and useful companion tool in that respect, to illustrate multidimensional physical data such as electron shells, for example, or to graph distributions of geophysical stresses and strains. In those depictions and innumerable others, a physical quantity is expressed in a color scale. Often, large values are depicted by red and small values by blue, a scheme that mimics the subjective impression of heat. Physical or other data are thus transferred to an intuitive scale to match the needs of human visual perception.

Visualization is often used in the field of acoustics as well-for instance, to mark loud and quiet zones in noise maps with hot and cold colors. But let's stop here and ask ourselves, Why are acoustic phenomena mapped so that they provide sensory input for the eye and not for the ear? Traditionally, the eye provides the main sensory input while we are reading. That process starts in primary school and continues through our university education. We listen to teachers and professors speak, but we focus on the meaning and rarely if ever on the sounds themselves. Mathematical, physical, chemical, and biological contents of learning are illustrated on printed matter by using diagrams or figures. Today, however, printed matter is complemented by electronic media, which can involve the eye and the ear equally and without restriction. In education, research, and consulting, discussions of acoustic phenomena are currently undergoing a revolution as the expression of sound in numbers and colors changes and an expression in "audible data" becomes possible. The process of making acoustic data audible is called auralization. The same concept can even be extended to include the auralization of data from nonacoustic phenomena, for which it is usually called sonification.

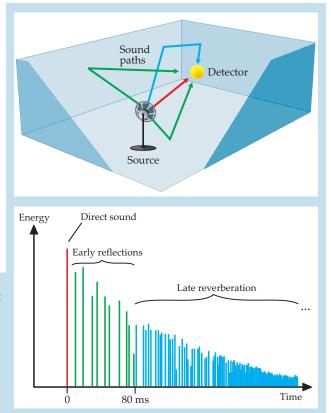

In auralizing spaces, one tries to simulate the effect that rooms have on sounds. Concert-hall acoustics serves as an ex-

Figure 1. Room impulse response. (a) The sound source is modeled by omnidirectional ray emission. Four of the paths that reach the detector are shown. The paths reflect off the walls and arrive at different times and with different sound energies, which determine the positions and amplitudes of the corresponding peaks in the room impulse response. **(b)** In the total room impulse response, peaks are derived from numerous sound paths originating from all directions of emitted rays. The earliest peak is the direct sound. The early reflections that arrive within the next 80 ms determine the sound's spatial impression.

ample to understand the sound heard from a musical instrument. Without the room, the sound would be weak in intensity and poor in musical expression. The room is part of the musical experience: It adds strength and reverberation and makes the sound "spatial." The difference between the so-called dry instrument sound and the sound in a room is the focus of architectural acoustics, a discipline founded some 100 years ago by Wallace Clement Sabine based on his studies of Boston's Symphony Hall.¹ Today, architectural acoustics, its physics, and its hearing psychology are well understood in principle.

Architectural acoustics

Sound generally propagates from the source into free space and is distributed over a range of directions. In the far-field approximation, which holds quite well for distances larger than 2 m, the radiated sound pressure depends only on the direction and on the 1/r distance law of spherical wave

Box 1. Room acoustic simulation in short

Wave physics in rooms can be described in the time domain or in the frequency domain. In the frequency domain, the ansatz of harmonic functions reduces the wave equation for the sound pressure p,

$$\nabla^2 p - \frac{1}{c^2} \ddot{p} = 0,$$

to the Helmholtz equation $\nabla^2 p + k^2 p = 0$. Here, c is the speed of sound, k the wave number $(2\pi f/c)$, and f the frequency.

For a rectangular shoebox shape of dimensions *L*, *W*, and *H*, the boundary conditions are easy and the modes (room resonances) can be counted by natural numbers *I*, *m*, and *n*:

$$f_{lmn} = \frac{c}{2} \sqrt{\left(\frac{l}{L}\right)^2 + \left(\frac{m}{W}\right)^2 + \left(\frac{n}{H}\right)^2}.$$

The Helmholtz equation can also be solved for any room shape and boundary condition by using numerical methods. The resulting modes are basically of the same quality as for the shoebox room.

Energy losses at the room boundaries give each mode a certain half-width in the sound-pressure frequency response. Because the density of modes increases with f^2 , the acoustic behavior is characterized by two domains—one exhibiting modal behavior and one in which individual modes cannot be resolved and the behavior is statistical. As shown in this figure

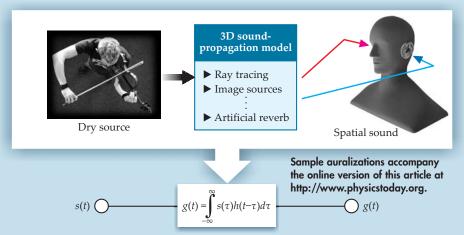
propagation. In a room, the primary sound wave is diffracted and scattered by obstacles such as rows of chairs or columns and reflected from room boundaries. So to understand the effect of the room, one has to know the amount of diffraction, scattering, and absorption (or reflection).

The physics expressed in the linear theory of sound is rather similar to electromagnetic wave theory, and thus we find similar approximations of scattering, diffraction, and plane-wave reflection. The key to describing those wave effects is the Helmholtz number $k \cdot a$, the product of the


wavenumber $k = 2\pi/\lambda$, where λ is the wavelength, and the characteristic dimension a. However, consider that sound frequencies in the audio range from 20 Hz to 20 kHz and characteristic room and obstacle dimensions vary between 5 cm and 50 m. Thus the range of Helmholtz numbers covers six decades. Approximations such as Mie or Rayleigh scattering and Fresnel or Fraunhofer diffraction cannot be applied across the whole frequency range.

The numerous eigenfunctions (modes) in a bounded medium create further complications. We can identify in bounded spaces acoustic modes equivalent to the modes we can find in lasers, optical fibers, or waveguides, particularly if the geometry is easily defined by Cartesian, cylindrical, or spheri-

of sound-pressure magnitude |p| at an arbitrary point as a function of normalized frequency, the two domains are separated by the Schroeder frequency


$$f_s \approx 2000 \sqrt{\frac{T}{V}}$$

where the reverberation time T is in seconds and the room volume V is in cubic meters.

In another model of wave propagation in the room, one works in the time domain and considers the opposite of harmonic signals—the Dirac δ -function pulse and its propagation as a wavefront. As in geometrical optics, we can describe the wavefront by rays: Sound rays are emitted from the source, undergo specular

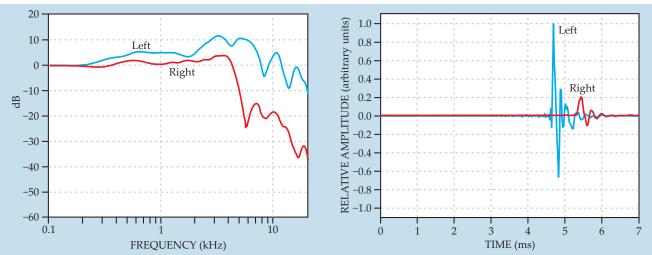
cal coordinates. The analytical solutions of the acoustic Helmholtz equation give excellent insight into the acoustic field in rooms (see box 1). The characteristics of the sound pressure at a point receiver in a room can be divided into two parts. One is dominated by individual modes, whose maxima and minima lead to significant spatial differences in the sound level. The other part can be described only by statistical methods; its fine structure is not stable and fluctuates due to small changes in the air by heating and cooling systems, moving people, and the like.

Figure 2. Auralizing rooms requires mapping the wave-propagation model to a signal-processing model. Reflections and other effects are represented by a binaural room impulse response h(t) that is calculated using ray tracing, image sources, and other computational techniques. The impulse response is convolved with the temporal function s(t) of a reverberation-free sound (such as a recorded source sound) to produce the spatial sound g(t) heard by the listener.

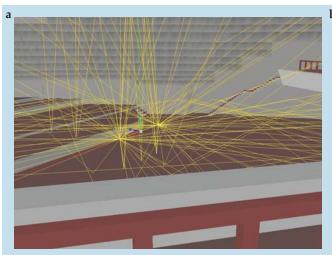
reflections off smooth walls or Lambert scattering off irregularly shaped surfaces, and may reach a receiver (listener) after a finite travel time and energy loss. For the geometric model to be relevant, the surface dimensions must be large compared to the wavelength. Wave effects such as modes and diffraction are neglected. In the case of a specular reflection, the sound paths can also be constructed deterministically by using mirror-image sources, a method akin to that of mirror charges above a conducting surface. The plot of energy versus travel time is called the room impulse response (see figure 1).

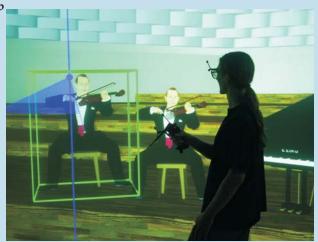
The heart of the computer algorithms for ray tracing or mirror

images is determining the points where ray vectors intersect infinite planes and testing whether those intersection points are in polygons that describe the portions of the infinite planes where the actual room boundaries (walls, floor, doors, windows, ceiling, reflector panels, and so forth) are located. The computational challenge is the time needed to consider all the permutations of boundary-to-boundary combinations. For large problems—room models with more than 1000 polygons—data structures such as beam trees can efficiently reduce computation time.


The table below contrasts the two methods of simulating rooms.

Basics and limits of room acoustics simulation		
	Wave method	Ray-tracing method
Basis	Modes, diffraction fields	Reflections, reverberation
Room size	Small, typically < 100 m ³	Large, typically > 100 m ³
Frequency range	Low, $f \ll f_s$, typically < 200 Hz	High, $f \gg f_s$, typically > 200 Hz
Sound signal	Pure tone, narrowband	Transient, broadband
Computational method	Numeric, analytic	Ray tracing, mirror images
Most important limitation	Computation time	Geometrical acoustics
Application	Control rooms for recording, music, and talk studios; vehicle cabins; rooms in dwellings; classrooms	Classrooms; theaters; concert and opera halls; churches; public spaces; workrooms; factories


When studying sound-field physics by using the stationary solution to the Helmholtz equation, one expects the sound perceived in rooms to be an awful cacophony: It varies in space—the sound level of the various listening areas in concert halls will differ greatly—and it statistically fluctuates with random phases. Our experience of listening to sound in rooms, however, is completely different: Sound in rooms is quite acceptable, and "room effect," or spatial sound, is even desirable and often added by using effect processors in music production. How is that possible?


In answer, please note that you were led down a wrong track when we discussed wave physics and the stationary case—the so-called "pure tone" or "acoustic laser." The pure physical approach based on harmonic excitation obscures crucial points of listening in rooms. Consider two facts:

- ▶ Real-world sound signals are usually not dominated by pure tones but by tone mixtures, noise, and transients.
- ▶ Our listening experience in a room, compared with a free field (outdoors), is characterized by reverberation—a dynamic phenomenon in time.

Figure 3. Sound goes binaural. Diffraction and reflection by the head and torso cause the sound field at the left and right ears to be different. Those effects are represented by head-related transfer functions. Filtering of monaural signals with HRTFs creates three-dimensional sound images. The transfer functions are usually defined in polar coordinates for the plane waves incident in a given direction. **(a)** A sample HRTF magnitude for the right (red) and left (blue) ears. **(b)** The corresponding, normalized head-related impulse responses, the inverse Fourier transform of the HRTFs. The HRIRs illustrate the amplitude and time difference of sound arriving at the ears. In this example, the sound is incident from the left side of the listener.

Figure 4. Virtual room acoustics. Integration of virtual reality and acoustics in a virtual concert hall. (a) The paths in yellow are calculated to be audible for a certain virtual listening position. (b) In an interactive virtual reality, such as this CAVE-like environment, the auralization needs to be updated every time the listener's position or head orientation changes. The Cave Automatic Virtual Environment was first presented by Carolina Cruz-Neira and colleagues at the University of Illinois.¹³ In a CAVE, computerized images are projected onto six screens arranged cubicly. A user standing inside the cube can experience an almost perfect immersion in the virtual environment.

Thus we need to extend the discussion on room acoustics from pure tones and sound pressure distributed in space toward a concept of sound propagation in time. Apart from specific problems such as low-frequency hums or feedback loops in public-address systems (examples where pure tones are relevant indeed), the time-domain approach gives much better insight into the psychoacoustic effects of sound in rooms.

The approach of acoustics in the time domain is best understood as a form of particle or ray tracing. We are now in the field of geometrical acoustics, the basis for simulations and auralizations of large spaces. In contrast to wave physics, the fundamentals are energy carriers such as particles that propagate at the speed of sound, hit room boundaries, and occasionally reach receivers (listeners). The room's sound field is now composed of a series of reflections, each with a specific delay and energy (see box 1). Figure 1 presents a so-called room impulse response. It is specific for each source-to-receiver situation and contains several components that are relevant for psychoacoustics.

Imagine being a listener in a room and perceiving an impulse-like handclap sound from a source. The direct sound determines the localization of the source. It is the first acoustic information to reach you, and its arrival time depends on the distance between you and the source. The reflections arriving within 80 ms of the direct sound form a cluster of so-called early reflections that produce specific subjective effects—such as clarity, intimacy, and envelopment—on the overall impression of spatial room sound.²⁻⁴ Reflections with delays longer than 80 ms form the reverberation in its specific, data sense. (Note the distinction between a reflection and an echo. In room acoustics, an echo is a strong reflection with a delay larger than, say, 100 ms that creates a perceived repetition of the sound.)

In a three-dimensional space, the probability of similar delays increases with time t, resulting in a reflection density that scales as t^2 . The density of modes in frequency domain also increases as f^2 . Such cross-domain analogies are fascinating. Manfred Schroeder pointed out the time–frequency correspondence in the transition from the modal regime to the statistical regime in wave fields.⁵

The impulse response consists of parts that depend on the source and listener positions in the room and parts that are statistical in nature and similar throughout the space. Understanding the decomposition is essential: In simulations of room acoustics and in auralizations, one must balance the computational complexity of achieving physical correctness on the one hand and the speed and ease of application and the perceived realism on the other. Therefore, one typically uses mixed strategies that combine exact calculations of delay and energy with stochastic components that approximate the reverberation tail.6 The quality of simulation programs, if applied correctly, is about the same as the quality of state-ofthe-art acoustic measuring equipment. The uncertainties or deviations from the "true" result are of the order of magnitude of the so-called just-noticeable differences, the resolution scale of human acoustic perception.

Sound signal processing

Having methods available to calculate the impulse response, we can prepare the next step of the auralization. Through geometrical acoustics and stochastic methods such as ray tracing and radiosity—which simulates the diffuse propagation of sound—one can identify the energy, delay, and direction of incidence for the direct sound and each reflection. The key algorithm in audio signal processing is convolution.

In physics, convolution is commonly used to calculate joint probability density distributions in electron clouds or to extract spectral sensitivity functions of detectors from measurement data. In audio engineering, convolution is used to filter sound. Such filters may represent simply a coloration of sound (such as an equalizer) or any other linear operation on the time-dependent audio signal s(t) (see box 2). In auralization, the impulse response of the room (or another sound-transmitting system) is represented as a filter, h(t). The resulting sound signal, g(t) = s(t)*h(t), is the convolution of the signal and the filter and has, in general, the characteristics of both the original "dry" source signal and the transmitting system (see figure 2).

The sound propagation model in figure 2 is constructed using ray tracing, image sources, or hybrid methods. In the end, the contribution of the sound source emitted in a ray di-

rection is given as an impulse response function with delay due to wave propagation and spectral features mainly due to absorption. The other components of the filter, such as surface absorption, source directivity, and the so-called head-related impulse response that characterizes binaural head directivity, include spectral and spatial information that is relevant for the timbre (coloration) and the localization of the perceived sound.

The HRIR is the inverse Fourier transform of the binaural head-related transfer function (figure 3).7 Both the HRTF and HRIR express the linear distortions of the plane-wave sound pressure by the human head and torso. At low frequencies the HRTF has a value of 1 (that is, 0 dB) because the head and the torso are small compared to the wavelength. At higher frequencies, reflection and diffraction effects come into play. Above 10 kHz, corresponding to wavelengths of some centimeters, the fine structure of the pinna — the outer projecting portions of the ear - comes into play. HRTFs are unique to individuals. However, they have common features and characteristics typical for the human population, and acousticians have developed manikins that embody "average" HRTFs. Introducing HRTFs into the audio signal processing makes the result twochanneled, one for each ear. Filtering with HRTFs is called binaural synthesis. The listening experience, including the precision to which sounds can be localized, is best if an individual's own HRTFs or best-average (manikin) HRTFs are used. (For more on sound localization and HRTFs, see the article by Bill Hartmann in Physics Today, November 1999, page 24.)

Binaural syntheses can be used for various acoustic scenarios in outdoor or indoor environments. Each sound path, including the direct sound and each reflection, must be filtered separately with the HRTF of the specific direction. The virtual acoustic signal at the listener is therefore consistent

with the real sound field, including delayed repetitions of the original sound, and thus the impression of sound in the virtual space is auralized.

Acoustic virtual reality

The auralized sound can be presented with an appropriate sound-reproduction system consisting of headphones, loudspeaker groups, or loudspeaker arrays. In each case, specific signal processing is used to implement the binaurally auralized spatial sound that will reach the listener's ears. The quality of the systems used in acoustics research is superior to that of commercial surround-sound systems used in home theaters. Although similar to consumer electronics, the research systems provide exact sound localization in 3D space rather than a rough spatial effect of "left, right, or behind." Accordingly, the listening room must be considered, too, because by its own reflections it will modify the sound field at the listener's ears. An anechoic—that is, reflection-freeenvironment is therefore advantageous, except when using headphone reproduction. Headphones, though, require exact equalization and adaptation to individuals.

The problems of the sound reproduction may be reasonably resolved, so the last frontier to be tackled is real-time auralization. A real-time performance is one of the three elements of virtual reality (VR). The other two are multimodality (addressing not only visual senses but also auditory, tactile, and other senses) and interactivity (allowing the user to move within the virtual environment, change objects, and the like). With a 3D representation of the virtual environment, the user will experience immersion, one characteristic feature of VR systems.

Everything described so far about auralization also applies to VR settings: simulation of sound-field physics, signal processing for auralization, and 3D sound reproduction. But

Box 2. Auralization signal processing

Any sound signal s(t) can be decomposed into a series of weighted and delayed Dirac pulses $\delta(t)$ by using the convolution integral

$$s(t) = s(t) * \delta(t) = \int_{-\infty}^{\infty} s(\tau) \delta(t - \tau) d\tau.$$

The convolution partner of the signal can also be an impulse response function h(t) consisting of a series of impulses with different heights and delays:

$$h(t) = \sum_{i} h_i(t) = \sum_{i} h_i \delta(t - t_i).$$

One example of such a generalized impulse response function is the room response (see figure 1), consisting of reflections from room boundaries with strengths h_i and propagation delays (retardation) t_i . (In a similar way, the impulse response function is used to add artificial reverberation in audio engineering.)

In linear signal and system theory, the convolution with an excitation signal can be written as

$$g(t) = s(t) * h(t) = \sum_i h_i \int_{-\infty}^{\infty} s(\tau) \delta(\tau - t_i) d\tau.$$

The right-hand side can be straightforwardly interpreted: The signal g(t), which could be the sound signal heard by a listener, contains repeated versions of s(t) at each occurrence of a reflection path with retardation t_i .

The task of room acoustic computer programs is to determine the history of rays or particles in those reflection paths

that reach the listener. The needed data are the list of surfaces hit, their contribution to absorption and scattering, and the directions with respect to both source and listener. Including all relevant aspects of sound propagation, the contribution of a single reflection path to the impulse response is

$$h_i(t)|_{r,l} = \frac{\Gamma(\theta,\phi)}{ct_i} *\delta(t-t_i) *h_{\text{surfaces}} *HRIR(\vartheta,\varphi)|_{r,l}.$$

The components in the above equation are the source directivity Γ , in source-related coordinates θ and ϕ ; the spherical-wave spreading factor $1/ct_i$; the retardation t_i ; the effective impulse response h_{surfaces} of the boundaries involved (h_{surfaces} can be calculated as the inverse Fourier transform of the product of the complex reflection factors at each boundary); and the binaural head-related impulse responses, HRIR, in head-related coordinates ϑ and φ . Finally, the binaural impulse response, representing the signals at the left and right ears, is given by

$$h_{\text{total}}(t)|_{r,l} = \sum_{i=1}^{N} h_i(t)|_{r,l}.$$

The mathematical procedure of convolution can alternatively be expressed in the frequency domain by simple multiplication. The Fourier transform or its fast digital version, the FFT, is used to swap between time-domain and frequency-domain processing. For real-time processing, operations in frequency domain are typically faster, despite the computational load of the FFT.

www.physicstoday.org June 2009 Physics Today 39

Wireless

if the system is supposed to be dynamic, the position of the user must be measured (using head-tracking techniques) and transferred to an adaptive process (see figure 4). The time permitted for updating the results is on the order of milliseconds. Despite the many methods computer scientists have created for the dynamic calculations and the progress in computer graphics and in digital and animated movies, real-time processing of room acoustics remains an enormous challenge.

Room acoustic simulation remains an active area of research. From the above introduction to sound-field physics, it becomes clear that the particle or ray approach implemented in room acoustic simulation is only an approximation at higher frequencies. For small rooms or low frequencies, low-frequency modes will be significant. Few methods can calculate wave and particle acoustics simultaneously and thus cover the whole range of audible frequencies. Diffraction is hardly accounted for in a satisfactory way as yet. Efforts to extend uniform geometrical diffraction theory⁸ and other geometrical diffraction models to include multiple combinations of diffraction and reflection are promising.⁹ More applications are also being designed and tested.

Auralization is an important tool for test scenarios not only in room acoustic VR research, 10-12 but also in areas such as psychology (orientation, attention, behavior), human hearing, and neural processing, to name only a few. Obvious applications of auralization are teleconferencing, entertainment systems, and computer games. Even without those uses, simulations and auralizations will make progress on their own, if Moore's law of exponential increase in computer power remains valid for some years. But auralization is not merely a function of computer speed and memory size: Sound-field physics is more complex than accounted for in geometrical acoustics today, and better modeling of sound-field physics is needed. The goal of auralization is to create an auditory event that sounds correct: Psychoacoustic effects determine the precision to which the sound field needs to be understood and re-created. Determining the balance between physical accuracy and audible effects remains an interesting and challenging interdisciplinary problem.

References

- W. C. Sabine, Collected Papers on Acoustics, Harvard U. Press, Cambridge, MA (1922), reprinted by Dover, New York (1964).
- 2. H. Kuttruff, Room Acoustics, 5th ed., Taylor and Francis, New York (2009)
- L. L. Beranek, Concert Halls and Opera Houses: Music, Acoustics, and Architecture, Springer, New York (2004).
- 4. M. Barron, Auditorium Acoustics and Architectural Design, Spon Press, New York (1993).
- 5. M. R. Schroeder, J. Acoust. Soc. Am. 99, 3240 (1996).
- M. Vorländer, Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, Springer, Berlin (2008).
- J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Localization, MIT Press, Cambridge, MA (1996).
- 8. M. A. Biot, I. Tolstoy, J. Acoust. Soc. Am. 29, 381 (1957).
- U. P. Svensson, R. I. Fred, J. Vanderkooy, J. Acoust. Soc. Am. 106, 2331 (1999).
- 10. T. Lokki, L. Savioja, R. Väänänen, J. Huopaniemi, T. Takala, *IEEE Comput. Graphics Appl.* **22**(4), 49 (2002).
- T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, A. Ngan, J. Acoust. Soc. Am. 115, 739 (2004).
- T. Lentz, D. Schröder, M. Vorländer, I. Assenmacher, EURASIP J. Adv. Signal Process. 2007, 70540 (2007).
- C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, Association for Computing Machinery, New York (1993), p. 135.