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In a previous column (PHysICS
TODAY, September 2005, page 10), I in-
dicated how computer models might be
used to mimic and describe a few of the
small networks that control and drive
biological systems. I focused on the un-
derstanding that could be obtained
from moderately accurate descriptions
of relatively simple biological systems.
Here I look at conceptualizations of
much larger networks. (See also the ar-
ticle by Mark Newman, PHYSICS TODAY,
November 2008, page 33.)

Forty years ago Stuart Kauffman
took on the immensely challenging task
of understanding something about the
interlinked chemical activity in a living
cell. He despaired of the task of doing
the problem in anything like its full de-
tail but instead decided to describe it by
a vastly simplified and generalized
model. He started with N variables or
“nodes,” each representing a chemical
species that might be present in a cell.!
The possible states of the cell were spec-
ified by snapshots that described each
species as present or absent at a given
time. The cell dynamics was a vastly
simplified, stepwise process. Each
compound’s presence at time  + 1 de-
pends on the presence or absence of
a few other compounds at time t.
Thus, for example, compound A
would be present at time ¢ +
1if B and C were present at
time t but D was absent.
Kauffman described the
entire biological cell by
listing rules like that one
for all the N compounds
in the cell.

The rules are largely
built into the DNA and
the structure of the cell so
that the rules remain gf
largely fixed through
many cell divisions.

Of course, one could in-
vent a huge number of net-
works that would fit the de-
scription of a cell. Different
networks would be specified by giv-
ing different connections and differ-
ent rules for the formation of each par-
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ticular chemical compound. The task of
finding the rules for a given biological
system could be expected to be im-
mense, providing a job for more
than one generation of biochemists and
biologists.

Kauffman was unwilling to wait. In-
stead he built upon work of Paul Erdos
and Alfréd Rényi, in which they studied
ensembles constructed from all possible
networks of a given type.? Two param-
eters would describe the average prop-
erties of the biological cell: the number
of compounds, N, and the average
number of precursors, K, whose pres-
ence or absence would determine the
formation of a given compound. Kauff-
man picked at random from all possible
networks with given N and K, asking
what could be learned by saying that
biological systems are constructed from
a “typical” set of rules.! His approach
is somewhat similar to the Boltzmann-—
Gibbs strategy for statistical mechanics,
which says that a configuration for a set
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of gas molecules might be described as
picked at random from all possible con-
figurations of N molecules with a given
energy.

In recent years people have learned
the detailed structure of such networks
for a few biological systems by
painstaking experimental study of all
their reactions and interactions. A lot
can be learned from examining such
specific examples. Figure 1 shows one
such network. But it is also interesting
to look back and see what has been
learned from the general features of
Kauffman’s analysis. Because each com-
pound may be either present or absent,
the number of configurations is 2V, so
that eventually the cell must return to a
configuration it has visited earlier. Be-
cause the time-development rules are
fixed, thereafter the cell can only retrace
its earlier steps. Thus the system will
eventually settle down into a repetitive,
cyclical behavior. A given system can
support several different repetitive cy-
cles so that, depending on initial data,
the cell will fall into one of several cy-
cles. Kauffman took the different cycles
to each represent a different kind of

cell. Our bodies contain many
different cell types—skin,

brain, muscle ... each

Figure 1. A map of pro-
tein—protein interac-
tions, each node
being a protein. A
protein is connected
to another if there is
experimental evidence
that they interact with
each other in yeast. The
color of a node signifies
the effect of removing the
corresponding protein
(red, lethal; green, non-
lethal; orange, slow growth;
yellow, unknown). (H. Jeong,
S. P. Mason, A.-L. Barabasi, Z. N.
Oltvai, Nature 411, 41, 2001.)
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with an identical genetic makeup. Just
as different cycles of dynamical sys-
tems might be generated by giving the
systems different initial conditions, so
different cell types emerge from identi-
cal dynamics but different starting
conditions.

One might begin to ask about the
generic properties of such networks.
For an overview of the work done, see
the review paper of Max Aldana, Susan
Coppersmith, and me.> One of three
kinds of behavior can be discerned in a
given network. If the connections
among nodes are sparse, different parts
of the system each have their own dy-
namics independent of the other parts.
For such systems, which arise when the
average K is less than 2, we get a kind
of frozen behavior in which there is too
little linkage among the different nodes
for the system to exhibit the types of
complexity characteristic of actual bio-
logical situations. Conversely, for K
greater than 2, the network motion is to-
tally chaotic in that a change in the rule
at almost any node can change the sub-
sequent behavior in a finite fraction of
all the nodes of the system. Such a struc-
ture is much too noise-sensitive to rep-
resent the noise-tolerant response char-
acteristic of real biological systems. For
K very close to 2, the system displays a
kind of critical behavior intermediate
between frozen and chaotic states. In
that case a change in an initial value of
anode or in the rule for updating a cer-
tain node causes a small subset of the
nodes to change their behavior. How-
ever, most of the nodes will continue to
follow the same pattern as before. That
kind of partially flexible, but mostly un-
changing, behavior is characteristic of
most biological systems. Biologists de-
scribe such behavior by using the word
“robust.”

Kauffman thus argued that biologi-
cal systems might well show a kind of
critical dynamics, akin to the dynamics
seen near the critical point of a phase
transition. Nowadays that argument is
widely accepted as giving a very rough
but reasonable result.

Detailed study of networks

In recent years biologists have been able
to see the actual dynamics of a few
much-studied networks. Each of those
networks had previously been ana-
lyzed piece by piece in experimental
work by biochemists and biologists.
The nodes each contain the concentra-
tion of the different chemical com-
pounds. Each node is linked to the com-
pounds that determine its production
rate. Such studies do not support the
initial presupposition that biological
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networks look like they have been
picked from a randomly constructed
ensemble. Indeed, many of the net-
works have been understood as being
structured from small pieces that pro-
vide rather elementary functions, like
the AND and OR gates found on a com-
puter chip. (See, for example, René
Thomas’s extensive analysis of the com-
ponent pieces of biological networks.*)

Furthermore, recent work has
shown that many biological networks
are constructed from a few preferred
small structures. Uri Alon and his
coworkers have analyzed small
pieces—containing only a few nodes
and their interconnections—carved
from large biological networks, and
they have counted the frequency of oc-
currence of the different possible struc-
tures.® They then compared these fre-
quencies with ones drawn from
randomly connected networks, a la
Kauffman. The biological networks
showed a detailed structure quite dif-
ferent from the purely random systems.
In particular, in each network a few of
the structures, called motifs, appeared
far more frequently than one would ex-
pect from randomness.

For example, according to Alon, in
contrast to a random network, there are
many more negative feedback loops
with the structure of figure 2a than one
might expect at random for a network
characterized by an average connectiv-
ity, K. The negative feedback loops act
as “thermostats,” which can control in
a precise and reliable manner the con-
centration of important chemical
species. In contrast, the number of pos-
itive feedback loops is far smaller be-
cause biological systems have little use
for runaway quantities.

Different biological networks have
different motifs because different kinds
of small structures might serve useful
purposes in each context. Evolution
will then especially select those struc-

Figure 2. Two motifs from an E. coli
gene regulatory network. The blue
circles are nodes. The heavy lines rep-
resent connections within the motifs;
the light lines connect the motifs to
the rest of the network. Panel a is a
negative feedback circuit; the bar at
the end of the arc indicates that this
particular signal is inhibitory. Panel b
might represent an AND gate in
which a signal is produced on the
right if both inputs are present.

tures that are robust—that is, those that
maintain their functionality even when
changed slightly. Alon further argues
that evolution, like a computer pro-
grammer, tends to duplicate and reuse
structures already proven to be useful.
So he expects that each kind of network
will show its own list of oft-repeated
motifs.

Thus recent studies move far from
Kauffman’s random networks. How-
ever, the randomness is not the impor-
tant take-home message from the ear-
lier work. Rather, the enduring point is
the three states of the system—frozen,
critical, and chaotic—and the contrast
between the way information flows in
each state. This message is far broader
than the model that originally sup-
ported it and is used in many different
areas of physics, mathematics, and
computer science. The change between
the ordered and chaotic modes is called
the percolation transition and is a ubig-
uitous descriptor of the slow transfer of
information.
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