obituaries

To notify the community about a colleague's death, subscribers can visit http://www.physicstoday.org/obits, where they can submit obituaries (up to 750 words), comments, and reminiscences. Each month recently posted material will be summarized here, in print. Select online obituaries will later appear in print.

Giuseppe Franco Bassani

Giuseppe Franco Bassani, a cofounder of the modern Italian school of condensed-matter theory, died in Pisa on 25 September 2008 after a long and tenacious fight against cancer.

Born on 29 October 1929 in Milan, Franco studied at the University of Pavia, with Piero Caldirola and Fausto Fumi as his thesis advisers. After finishing his *laurea* thesis, "The energy levels of the F-center," in 1952, Franco went to the US to work at the University of Illinois at Urbana-Champaign, where he collaborated with Frederick Seitz and considered himself Seitz's student.

Franco returned to Italy in 1956 to take a position as an assistant professor, first at the University of Palermo and then at Pavia University. In 1960 he moved to Chicago to work at Argonne National Laboratory as a research associate. His research during that time was instrumental in the formulation of the modern electronic theory of solids based on pseudopotentials and in the analysis of the connections between electronic structure and optical properties, particularly of semiconductors. That work was described by David Brust, James Phillips, and Franco in a 1962 article published in Physical Review Letters (volume 9, page 94). His book Electronic States and Optical Transitions in Solids (Pergamon Press, 1975), written with his student Giuseppe Pastori Parravicini, inspired at least two generations of theorists worldwide who were working in that field. (A Russian translation was published in the Soviet Union without any royalties paid to the authors!) The book made extensive use of group theory, a subject that Franco mastered, beginning with an advanced course he took in 1955 under Seitz at Illinois.

In 1963 Franco returned to Italy and took a job as a professor of theoretical physics at the University of Messina. He moved to the University of Pisa in 1966 and then went to the University of Rome, where he held the chair of solid-state physics from 1969 to 1980. But the vagaries of student politics in Italy's capital were too much for Franco's con-

Giuseppe Franco Bassani

servative spirit. After spending 1979 as a visiting scholar at the University of Illinois, Franco returned to Pisa in 1980, where he had been offered the chair of solid-state physics at the prestigious Scuola Normale Superiore. He later served as the director of the Scuola Normale from 1995 to 1999.

In addition to teaching students and encouraging them to engage in vigorous research, Franco carried out his own studies and organized lively condensed-matter physics groups. He extended his research interests to the theory of excitons, the theory of nonlinear optical properties, and the electronic structure and optical properties of layered compounds, including organic—inorganic heterojunctions. In studying the electron—lattice interactions at F-centers, he revisited the subject of his 1952 thesis.

Franco steadfastly supported Italian and European physics in all its manifestations. He was a member of Italy's Accademia Nazionale dei Lincei, and he served as chairman of the European Physical Society's condensed-matter division from 1986 to 1992 and as president of the Italian Physical Society from 1999 to 2007. Franco received numerous recognitions and awards, including the 1979 Somaini Prize of the Italian Physical Society, the 1996 Italgas Prize for

technology and science of materials, and the Italian Presidential Gold Medal for Science and Culture for 2000.

Besides his contributions to science, Franco was a cultivated man with a love for history that rivaled that of professional historians. One morning while driving along the Muro Torto, part of Rome's Aurelian Walls, he realized that a small statue, usually encased in the wall, was missing and called the superintendent to the monuments of Rome. After a lengthy and in-depth discussion with the superintendent, who at first thought he was talking to the well-known writer Giorgio Bassani, Franco learned that the statue had been removed for restoration.

Many of Franco's friends remember him stopping his car in the middle of traffic to point out some antiquities and explain their history. Other drivers would furiously blow their horns, but their reactions did not seem to deter him from his mission.

Franco also was well regarded for his expertise and appreciation of wine. With his brother Giancarlo, he produced excellent wines from a vineyard on his family estate. Once Franco acted as the "defender of red wine" in a fictitious trial in which he brilliantly illustrated the wine's almost miraculous and therapeutic virtues.

An exceedingly warm and gentle human being, Franco was beloved by his many students and was well respected as a teacher, mentor, and colleague. He was a man of exceptional vigor and principles. His personality, humor, and many interests are reflected in numerous other enjoyable anecdotes that make the rounds among his friends, colleagues, and students. They and the physics community will dearly miss him.

Manuel Cardona

Max Planck Institute for Solid State Research Stuttgart, Germany

Gianfranco Chiarotti

University of Rome II ("Tor Vergata") Rome

Erio Tosatti

International School for Advanced Studies and International Center for Theoretical Physics Trieste, Italy

Ronald Harry Ottewill

Ronald Harry Ottewill, who died from cancer on 4 June 2008 in Wickham, UK, was a colloid scientist with unusually broad vision and great energy. He played an important role in the development of soft condensed matter as a

distinct subdiscipline of physics.

Ron was born on 8 February 1927 in Southall, a suburb of London. He attended local schools and developed an interest in science; he also excelled at cricket and middle-distance running. In 🚆 1948 he received a BSc in chemistry, with subsidiary physics, from London University's Queen Mary College, where he also earned a PhD, supervised by D. C. Jones, in 1952. His thesis was on the adsorption of hydrocarbon vapors on surfaces. In 1952 Ron joined the department of colloid science at Cambridge University. There, working on antigen-antibody reactions supervised by Paley Johnson, he completed a second PhD in 1955. That work initiated a lifelong interest in light scattering and electron microscopy. He stayed in Cambridge for 12 years and developed broad interests in colloid science. In 1964 Ron moved to the chemistry department at Bristol University; he became a professor in 1971 and remained at Bristol for the rest of his career.

Ron's initial task at Bristol was to set up a one-year MSc program in colloid science. He ran it successfully for many years; the program had some 250 graduates, many of whom rose to senior positions in academia and industry. Ron was an inspiring teacher who continued to give about 60 lectures a year even when he was heavily distracted by other activities.

In 1964 physical chemistry research at Bristol was centered on surface sci-

Recently posted death notices at http://www.physicstoday.org/obits:

Robert L. Gluckstern

1924 - 17 December 2008

Howard M. Messner

10 June 1937 - 4 December 2008

Oliver Selfridge

10 May 1926 - 3 December 2008

Arthur Kantrowitz

20 October 1913 - 29 November 2008

Edwin E. Salpeter

3 December 1924 - 26 November 2008

George Zaslavsky

31 May 1935 - 26 November 2008

John Clemow

9 November 1911 - 17 November 2008

Kiyoshi Itô

7 September 1915 - 10 November 2008

Carl D. Keith

29 May 1920 - 9 November 2008

John North

19 May 1934 - 31 October 2008

George Bishop

16 January 1927 – 11 October 2008

Jim Message

12 May 1932 - 9 August 2008

ence. Ron established a colloid group that quickly became world renowned. At that time a main focus of colloid science was understanding the principles underlying the stability of colloidal particles, particularly charged particles, in dilute suspension. For that purpose, Ron developed various well-characterized "model" systems, first basing them on silver iodide and later using colloidal polystyrene. In the 1970s he was one of the first colloid scientists to recognize the challenges posed by concentrated suspensions. Light-scattering experiments with one of us (Pusey) demonstrated the strong influence of interparticle interactions on both the structure and the dynamics of the suspension.

In the late 1970s, Ron and John White, then director of the Institut Laue-Langevin (ILL) in Grenoble, France, pioneered the use of neutron scattering in the study of colloid structure and interactions. That became one of Ron's main interests for the rest of his career. He was very "hands on" and frequently traveled to Grenoble, where he could be found in the instrument halls late at night. The fact that soft matter now commands a large fraction of the beam time at the ILL and other neutron facilities owes much to Ron's early insights.

The synthesis of colloidal particles, particularly with a narrow distribution of size, is a skilled activity beyond the scope of many physicists. Ron and his group were generous in providing samples for others to use. His poly(methyl methacrylate) particles, developed with Imperial Chemical Industries' (ICI) paints division, became the standard "hard sphere" model colloid, now used by many physicists. The particles were

used by William Russel, Paul Chaikin, and David Weitz in their study of colloidal crystallization on the space shuttle and the International Space Station.

Ron also was heavily involved in administration and the promotion of colloid science. At Bristol he served terms as chairman of the school of chemistry and dean of science. He was instrumental in setting up the UK Polymer Colloids Forum, which recently established a medal in his name, and the colloid and interface science group of the Royal Society of Chemistry. Ron chaired committees of the ILL and the UK Science and Engineering Research Council. He was also an active member of the "colloid mafia," which for many years ran the Gordon Conference on Polymer Colloids. Throughout his career Ron was in demand as a consultant for industrial companies such as Procter & Gamble, Exxon Corp, ICI, and BP, whose scientists appreciated his remarkable ability to provide quick, practical solutions to almost any problem.

Although he liked to be in charge, Ron was not particularly well organized. His office, with every surface piled high with books and papers, was a standing joke among colleagues and students. But once you got insidefrequently after waiting in line-and found a vantage point from which to see him through the piles, Ron appeared to have all the time in the world and could unerringly find obscure papers relating to experiments done years earlier.

Ron will be sorely missed, especially for his open mind, his keenness to help, and his encyclopedic knowledge.

> Peter N. Pusey Edinburgh University Edinburgh, UK **Brian Vincent** Bristol University Bristol, UK

Rights & Permissions

You may make single copies of articles or departments for private use or for research. Authorization does not extend to systematic or multiple reproduction, to copying for promotional purposes, to electronic storage or distribution (including on the Web), or to republication in any form. In all such cases, you must obtain specific, written permission from the American Institute of Physics.

Contact the

AIP Rights and Permissions Office, Suite 1NO1 2 Huntington Quadrangle, Melville, NY 11747-4502 Fax: 516-575-2450 Telephone: 516-576-2268 E-mail: rights@aip.org