bases, Garfield's statement is still valid.

We conclude that the source index, accessed through the basic search function, cannot be used uncritically in research evaluation. The citation index contains most of the pertinent information, but it is not user friendly. And a fundamental weakness is that it underestimates the citations to journals not included in the source index.

A valid citation analysis is time consuming; it requires insight and, therefore, needs to be performed by experts.

Peter Sigmund Johan Wallin

University of Southern Denmark Odense

One thing Wheeler didn't do

One thing lacking in the special issue dedicated to John Wheeler (PHYSICS TODAY, April 2009) is any comment on why he did not receive the Nobel Prize. I think the explanation is political: Wheeler was a supporter of the Vietnam War. In 1967, while working on my thesis at Princeton University, I was stunned when Wheeler began one of our morning meetings by gleefully telling me that he had spent a good part of the night slinking about campus with a spray can to paint pro-war messages over peace symbols and other antiwar graffiti. I had the impression that he wanted credit for his act of civil disobedience and that he was hoping for repercussions. At the time I did not know how to react to that escapade, but I now think that Wheeler may have had a point—the Vietnam War certainly provided plenty of blame to share among all the participants.

The Swedish government fervently opposed the war, so much so that the prime minister denounced the bombings of Hanoi as crimes comparable to those of Guernica, Oradour, Babi Yar, Katyn, Lidice, Sharpeville, and Treblinka. It is easy to imagine that this stance put considerable pressure on the Nobel Committee not to award the prize to Wheeler. Political influence has often played a role in the literature prizes-not to mention the peace prizes, for which political influence is the name of the game. Political influence in the physics prizes is less obvious, but we can occasionally see a hint of it in the adroit splitting of the prize among several nationalities.

Wheeler has been described as the cleverest physicist of his generation not to receive a Nobel Prize. I recall the dis-

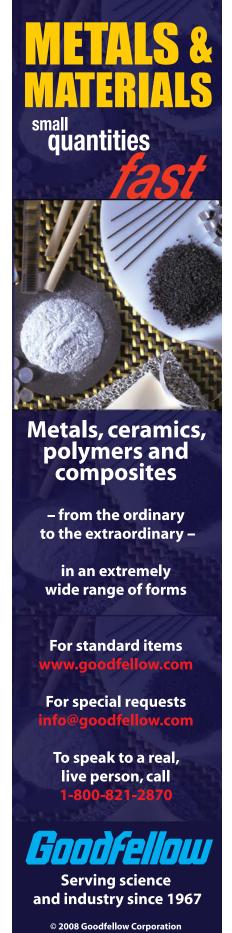
appointment that I felt in the 1970s and 1980s when his name failed to appear in the annual announcements. Of course, Wheeler was probably too much of a gentleman to entertain such thoughts, but I can't help suspecting political motivations.

Hans C. Ohanian (hohanian@uvm.edu) University of Vermont Burlington

On Wheeler and fission

John Wheeler's 1967 article on the mechanism of fission, which was recently reprinted (PHYSICS TODAY, April 2009, page 35), provided insight into the history of that exciting time that could only be related by one who was there. However, two aspects of that history tend to get overlooked. First, the liquiddrop model of the nucleus was conceived not by Niels Bohr but by George Gamow in late 1928 just before he left Copenhagen for a visit to Cambridge;1 he briefly described it in early 1929 in a discussion, held at the Royal Society in London, that was opened by Ernest Rutherford.² Second, the perturbation coefficients Bohr and Wheeler used for investigating the question of the fission barrier were different from those defined in their paper, and their equation for the configuration energy contains a misprint.³ Wheeler's fellow postdoc in Copenhagen, Milton Plesset, gave a detailed analysis of the Bohr and Wheeler calculation4 (which they characterized as "straightforward"!); I have prepared an upper-undergraduate-level treatment of the calculation.5

References


- 1. R. H. Stuewer, Perspect. Sci. 2, 76 (1994).
- E. Rutherford et al., Proc. R. Soc. London A 123, 373 (1929).
- R. D. Present, J. K. Knipp, Phys. Rev. 57, 751 (1940); 57, 1188 (1940).
- 4. M. S. Plesset, Am. J. Phys. 9, 1 (1941).
- 5. B. C. Reed, Eur. J. Phys. **30**, 763 (2009).

B. Cameron Reed

(reed@alma.edu) Alma College Alma, Michigan

Correction

September 2009, page 42—The neutron interferometry experiments on the Aharonov–Bohm duals were performed at the University of Missouri, not the University of Melbourne. They were a team effort led by Tony Klein and Sam Werner, with researchers from Melbourne and Missouri.

