hypothetical since simple cubic Te has never been found experimentally. (For a recent review, see reference 2.) Although simple cubic may be considered a special case of the trigonal spiral structure, it is not found in either selenium or Te as the pressure increases.^{2,3} That contradicts Pavel Karen's penultimate statement.

Phosphorus, calcium, and arsenic exhibit the simple cubic structure under pressure,² but we doubt that relativistic effects are the reason. Since the atomic numbers of those elements are not high, we expect that both the relativistic and nonrelativistic total energy calculations will provide similar results and, almost certainly, the same order of structures. Furthermore, application of pressure to simple cubic Po induces a transformation to trigonal (rhombohedral) structure,1 which also contradicts Karen. Therefore, most elements do not become simple cubic under pressure, and in those that do, the transformation is not governed by relativistic effects.

References

- 1. D. Legut, M. Friák, M. Šob, Phys. Rev. Lett. 99, 016402 (2007).
- 2. M. I. McMahon, R. J. Nelmes, Chem. Soc. Rev. 35, 943 (2006).

3. C. Hejny, S. Falconi, L. F. Lundegaard, M. I. McMahon, Phys. Rev. B 74, 174119

> **Dominik Legut** (legut@ipm.cz) Martin Friák

(mafri@ipm.cz) Academy of Sciences of the Czech Republic Mojmír Šob

(sob@chemi.muni.cz) Masaryk University Brno, Czech Republic

Alpher, Bethe, Gamow

Martin Harwit, in his memorial to Ralph Alpher (PHYSICS TODAY, December 2007, page 67), mentions that Alpher and Robert Herman were overlooked when the 1978 Nobel Prize was given for the discovery of the Big Bang's background radiation. Joseph D'Agnese quotes Alpher's reaction to not getting credit for his seminal work, "I would rather not have gone through that experience, to put it mildly. It was very painful."1

Perhaps the slighting of Alpher's contribution can be traced to the following: After his adviser, George Gamow, read Alpher's thesis, he wanted to include Hans Bethe's name on the resulting paper, so that its author list would be a wordplay on "alpha, beta, gamma." Bethe had not seen the paper, nor did he contribute to it. Alpher, suspecting his work would not get full credit, opposed including Bethe. D'Agnese quotes Alpher as saying, "This is my dissertation. How can Gamow kid around like this?" But Alpher finally assented.

Much later, while he was at the General Electric Research Laboratory, Alpher chaired the American Physical Society's committee on opportunities in physics. In 1981, because a publisher had infringed on my intellectual property, I petitioned to appear before the committee. When I met with the committee, which included physicists who were officers of major corporations, one of its members vehemently opposed its involvement in my case and immediately walked out. Alpher was resolute that the committee hear my case. No doubt because of its involvement, the case was later resolved to my satisfaction.

When I first met Alpher at that hearing, I did not know his feelings about Bethe's being included as an author of the famous Alpher, Bethe, Gamow paper. I mentioned that everyone knew

Meeting Chairs

The Pennsylvania State University tel. 814-863-4588

Shenda M. Baker Harvey Mudd College tel. 909-621-8643 shenda baker@hmc.edu

Michael R. Fitzsimmons Los Alamos National Laboratory tel. 505-665-4045

Seoul National University tel. 82-2-880-8986 ycjoo@snu.ac.kr

fitz@lanl.gov

For Additional Information visit the MRS Web site at www.mrs.org/meetings/ or contact:

Member Services Materials Research Society 506 Keystone Drive Warrendale, PA 15086-7573 Tel 724-779-3003 ax 724-779-8313

ELECTRONICS. PHOTONICS. AND MAGNETISM

- Performance and Reliability of Semiconductor Devices
- Transparent Conductors and Semiconductors for Optoelectronics
- Theory and Applications of Ferroelectric and Multiferroic Materials
- Rare-Earth Doping of Advanced Materials for Photonic Applications Materials and Technologies for 3-D Integration
- Low-Cost Solution-Based Deposition of Inorganic Films for Electronic/Photonic Devices Organic and Hybrid Materials for G:
- Large-Area Functional Systems
 Physics and Technology of Organic Semiconductor Devices Reliability and Properties of Electronic Devices on
- Flexible Substrates Material Science for Quantum Information
- Processing Technologies Magnetic Nanostructures by Design
- New Materials with High Spin Polarization and

Their Applications

- ENERGY AND THE ENVIRONMENT Energy Harvesting—Molecules and Materials Next-Generation and Nano-Architectured
- Photovoltaics 0:
- Structure/Property Relationships in Fluorite-Derivative Compounds Photovoltaic Materials and Manufacturing Issues Scientific Basis for Nuclear Waste Management
- Materials for Future Fusion and Fission Technologies
- Solid-State Ionics
- Mobile Energy Advanced Intermetallic-Based Alloys for Extreme **Environment and Energy Applications**

ENGINEERED MATERIALS AND MODELING

Materials, Devices, and Characterization for Smart Systems Computational Materials Design via Multiscale Modeling Biomineral Interfaces—From Experiment to Theory

2008 MRS FALL MEETING

- Mechanics of Biological and Biomedical Materials
- Materials for Optical Sensors in Biomedical Applications Polymer-Based Smart Materials—Process, Properties, and Application
- Design, Fabrication, and Self Assembly of "Patchy" and Anisometric Particles
- DD: Materials in Tissue Engineering

NANOSCIENCE

Symposia

- Nano- and Microscale Materials-Mechanical
- Properties and Behavior under Extreme Environments Nanofunctional Materials, Structures, and Devices for Biomedical Applications
- Microelectromechanical Systems-Materials and Devices II microelectroinecterinical systems—invalents and Devices in Advances in Material Design for Regenerative Medicine, Drug Delivery, and Targetting/Imaging Bio-inspired Transduction, Fundamentals, and Applications Nanotubes, Nanowires, Nanobelts, and Nanocoils—
- JJ:
- Promise, Expectations, and Status Transport Properties in Polymer Nanocomposites Nanowires—Synthesis, Properties, Assembly, and Application
- Applications of Group IV Semiconductor Nanostructures In-situ Studies across Spatial and Temporal Scales
- for Nanoscience and Technology Grazing-Incidence Small-Angle X-Ray Scattering Solid-State Chemistry of Inorganic Materials VII QQ:
- Synthesis and Processing of Organic and Polymeric Functional Materials for a Sustainable Energy Economy Artificially Induced Grain Alignment in Thin Films
- Selecting and Qualifying New Materials for Use in Regulated Industries Local Structure and Dynamics in Amorphous Systems
- Frontiers of Materials Research

Meeting Activities

Symposium Tutorial Program

Available only to meeting attendees, the symposium tutorials will concentrate on new, rapidly breaking areas of research.

www.mrs.org/fall2008

A major exhibit encompassing the full spectrum of equipment, instrumentation, products, software, publications, and services is scheduled for December 2-4 in the Hynes Convention Center. Convenient to the technical session rooms and scheduled to complement the program, the MRS Fall Exhibit offers everything you need all under one roof.

Publications Desk

A full display of over 950 books will be available at the MRS Publications Desk, Symposium Proceedings from the 2007 MRS Fall Meeting and 2008 MRS Spring Meeting will be featured.

Student Opportunities

Graduate students planning to attend the 2008 MRS Fall Meeting are encouraged to apply for a Symposium Assistant position and/or a Graduate Student Award. Applications will be accessible on the MRS Web site by June 1

A Career Center for MRS members and meeting attendees will be open Tuesday through Thursday. of that paper. Alpher took the reference with equanimity.

Besides his great intellectual achievements, Ralph Alpher was a gentleman of unfailing kindness and a keen sense of justice.

Reference

1. J. D'Agnese, *Discover*, July 1999, p. 60. **Samuel L. Marateck**(marateck@courant.nyu.edu)

New York University

New York City

TV could use real-world physics

I agree with James Jackson's letter (PHYSICS TODAY, November 2007, page 14), "Advocating Real-World Physics Classes." I will take the discussion further and include physics TV programs, such as some shown on NOVA and the Science Channel, that are even less relevant than physics classes.

Those TV shows emphasize irrelevant, unobservable, impractical, and inaccessible subjects such as mysterious dark matter, dark energy, black holes, parallel universes, and string theory—all subjects that have no relevance to the daily lives of ordinary people. Most of the programs turn people away from physics rather than draw them in.

It would be far more beneficial if the preponderance of the physics TV programs described phenomena people readily observe, and described them in a manner that viewers can actually understand. Such treatment would help establish physics as a useful, practical, interesting, and worthy subject.

Charles F. Gallo (chuckgallo@comcast.net) Superconix Inc Lake Elmo. Minnesota

Crystal quest

The item "US Condensed-Matter Community Grapples with Availability of Crystalline Samples" (PHYSICS TODAY, August 2007, page 26) mentions the role of the tenure practices of US physics departments in reducing the supply of crystalline samples. Arguments based on tenure are not likely to elicit a good response among the people making funding decisions. Agency heads and members of Congress do not have tenure and generally have far less job stability than the average person.

The scaled-back condensed-matter efforts of large electronics companies were also cited as reducing the supply. Those cutbacks are probably mostly due to increased emphasis on systems and software. However, part of the crystal-growing capability of larger electronics firms has been spun off into smaller companies; thus much of the source of supply remains. Small companies do not have tenure, or retirement either. In most cases a small company appreciates the opportunity to publish; it strengthens the collaboration between crystal growing and physics efforts, since it is beneficial to both. Small companies have strong incentive to associate with good physics groups in need of crystals; published papers help improve a company's reputation in general and help in winning government contracts. Also, a small company usually wants no part in university or research-institution politics.

One possible way to increase funding for crystal growing is to seek the cooperation of state governments. Since crystal growing may eventually lead to manufacturing jobs, states may have a strong interest in cooperating on funding. Many materials, such as those that are superconducting or thermoelectric, will probably be used in non-singlecrystalline form, but even in those cases, there is a great deal of commonality in materials synthesis technology. I testified before our state senate in support of such a program a few years ago, and I became aware of the attitudes of states, both in this country and abroad. States favor technology-based industry because it leads to more rapid economic growth. State funding of technology may often increase when federal funding is tight, such as in recessionary periods, because technology development is linked to job creation. The program about which I testified has prospered since that time.

> Brian J. Fitzpatrick (opticalfitzpat@cs.com) Optical Semiconductors Inc Peekskill, New York

Mixing science and theology

I cannot understand how PHYSICS TODAY could have published Robert Griffiths' review (PHYSICS TODAY, February 2008, page 65) of *Quantum Physics and Theology: An Unexpected Kinship* by John Polkinghorne. Science education in the US is still under attack by those who feel that their interpretation of the Bible is an equally valid source of knowledge as the scientific work of generations of biologists. Therefore, it is a disgrace for any physics journal to

publish a review that equates the methods of theology with those of science and to give credence to a book that argues the same point.

The methods of science and theology are not similar, nor is their validity. Who has ever designed an aircraft that flew on the basis of theological principles? Who has ever turned on a light that was powered on the basis of theological principles? Who has ever cured a child of a raging bacterial infection on the basis of theological principles? Or is PHYSICS TODAY next going to publish descriptions of miracles?

Theology and faith can guide believers' actions or provide emotional comfort, but they can never, as science can, be a method for deciding what is real or true. Although in a few fields, like cosmology and particle physics, some scientists have abandoned the scientific method for speculations not grounded in or testable by observation, the truth of that method continues to be validated every day by the efficacy of the technologies that are based on it.

In contrast, the tenets of theology are entirely grounded in the conflicting authorities of the sacred texts and priesthoods of the world's many different religions. Disputes as to which religion is true can never be resolved—although there continue to be attempts to do so by force. To argue, as Polkinghorne and Griffiths do, that there is no real difference between science and theology is to help pave the shortest route to a new Dark Age.

Eric J. Lerner (elerner@lawrencevilleplasmaphysics.com) Lawrenceville Plasma Physics Inc West Orange, New Jersey

Griffiths replies: The preceding letter is an illustration of what I referred to in my review as "misguided scientific fundamentalism." I can think of no better refutation of its dogmatic caricature of the relationship of science and theology than that provided by reading John Polkinghorne's book, which I therefore recommend to anyone interested in investigating the topic with an open mind.

Robert B. Griffiths (rgrif@cmu.edu) Carnegie Mellon University Pittsburgh, Pennsylvania

Correction

June 2008, page 11—In the penultimate paragraph of William Unruh's letter, the final sentence should read, "It was 60 years before Kepler, in positing his elliptical orbits, restored and improved on the equants."