

## The wizard's legacy

I'm grateful to Frank Wilczek for the enjoyable Reference Frame story about Don "Mr. Wizard" Herbert (PHYSICS TODAY, January 2008, page 8). I was born in 1951, and I remember watching Mr. Wizard from my earliest years. My mother is far from a science person, but she somehow knew that watching his show was a good thing for me.

Don Herbert helped make Wilczek into an acclaimed physicist and physics writer and me into a high-school physics teacher. During 34 years of teaching, I have helped numerous students learn the value and joy of scientific curiosity, thanks in part to Mr. Wizard.

**Frank Lock**  
([fasterlock@evol.com](mailto:fasterlock@evol.com))  
Englewood, Florida

**Thank you** for the item on Don Herbert, TV's Mr. Wizard. His science of everyday things never ceased to hold my childhood attention and was a major influence that eventually led me to a career in engineering. When his show was about to be canceled in the late 1950s, I asked my father to help me write a letter of protest to the network. I was elated when we read in the newspaper that the show was to be renewed the following year.

It would be hard to single out my favorite episode, though I do remember the toy steam engine that ran while it was all frosty and obviously quite cold. The challenge, to figure out what was

Letters and opinions are encouraged and should be sent by e-mail to [ptletters@aip.org](mailto:ptletters@aip.org) (using your surname as "Subject"), or by standard mail to Letters, PHYSICS TODAY, American Center for Physics, One Physics Ellipse, College Park, MD 20740-3842. Please include your name, affiliation, mailing address, e-mail address, and daytime phone number on your attachment or letter. You can also contact us online at <http://www.physicstoday.org/pt/contactus.jsp>. We reserve the right to edit submissions.

going on, was a simple but very effective lesson in thermodynamics. We learned at the end of the show that the steam engine's boiler had been filled with freon that was boiling off and driving the engine.

Thank you, Mr. Wizard, for many an enjoyable, informative, and challenging program.

**Robert Oppenheimer**  
([oppie51@verizon.net](mailto:oppie51@verizon.net))  
White Plains, New York

**Frank Wilczek's** references to greater and lesser wizards are true with respect to the Wizard of Oz, a prototype of tricksters who fits the first definition of a wizard. As a grandmother, retired librarian, and fan of the Harry Potter books, I differ with Wilczek's assessment that fictional conceptions like Harry Potter "tend to legitimize intellectual passivity and wishful thinking."

In the books, J. K. Rowling's protagonists must think how to use their skills—albeit magic ones—to solve a series of problems, some of them life threatening. True, wishful thinking has sometimes helped them, but they are actively seeking answers. They have solved problems with the best available information and sought additional information to help as well.

Potter's being a wizard is different than Don Herbert's; I agree Herbert was a real-world wizard without peers. Herbert's magic was twofold: He was not only a scientist but a skilled instructor. His wizardry opened worlds.

**Jane Daniels**  
([jdhiker@optonline.net](mailto:jdhiker@optonline.net))  
Mohegan Lake, New York

## Credentials and conformity

I applaud and agree with William Aghassi (PHYSICS TODAY, October 2007, page 12) when he writes, "In today's physics community only credentials and conformity count." Actually, credentials also mean little today, unless your research is in a trendy topic like string theory and you write from a fa-

mous university like MIT, Cambridge University, Imperial College, or Caltech. Gatekeepers and editors shun originality.

In his book *The Einstein Decade, 1905–1915* (Academic Press, 1974), physicist Cornelius Lanczos commented, "How fortunate that someone of the calibre of [Max] Planck was editor of *Annalen der Physik* [in 1905]. . . . Today none of these papers would see the light of day!"

**Howard D. Greyber**  
([hgreyber@yahoo.com](mailto:hgreyber@yahoo.com))  
San Jose, California

## Schrödinger solution for the Morse oscillator

In his review of Ilya Kaplan's book, *Intermolecular Interactions: Physical Picture, Computational Methods, and Model Potentials* (PHYSICS TODAY, July 2007, page 64), Lucjan Piela criticizes Kaplan for saying that the well-known solution of the Schrödinger equation for the Morse oscillator is approximate. The reviewer says it is exact. Actually, Kaplan is correct. The solution corresponds to an unphysical boundary condition that the wavefunction vanishes at an internuclear distance of minus infinity. The exact solution for a diatomic molecule would correspond to the wavefunction vanishing at the origin. The difference is large enough that it needs to be considered in practical work, especially for the hydrogen molecule.

**Donald G. Truhlar**  
([truhlar@umn.edu](mailto:truhlar@umn.edu))  
University of Minnesota  
Minneapolis

**Piela replies:** The Morse oscillator is a single point mass subject to the Morse original potential cited in Ilya Kaplan's book, equation 5.22. Contrary to what Donald Truhlar writes, the Morse oscillator does not represent two point masses with a spring, not to mention a diatomic molecule. Therefore, Kaplan's equation 5.23 is an exact solution of the

Schrödinger equation for the Morse oscillator. The same solution is, of course, an approximate one for the Schrödinger equation for two point masses with a Morse-like spring or any real diatomic molecule.

Truhlar could literally repeat his arguments for the harmonic oscillator, instead of the Morse one. His conclusion in such a case would mean that the widely known solution to the Schrödinger equation for the harmonic oscillator is not exact.<sup>1</sup>

## Reference

1. L. Piela, *Ideas of Quantum Chemistry*, Elsevier, Amsterdam (2007), p. 239.

**Lucjan Piela**  
(piela@chem.uw.edu.pl)  
Warsaw University  
Warsaw, Poland

inject too much of oneself.

More surprisingly, after recognizing that my book does provide a comprehensive overview of this rapidly expanding area, the reviewer questions "whether there is an audience for such encyclopedic texts, especially given the easy access to online sources of information such as the arXiv e-print server and Wikipedia." That question is relatively easily answered: Yes, there is periodically a need for a concise and comprehensive monograph that is above the anarchy and distortions on Wikipedia and to a lesser extent the e-print servers and that can serve those with mathematical training and limited free time to cull accurate treatments from the Web.

Moreover, because quantum information science is an area that transcends physics itself, the physics itself can sometimes be distorted, a situation more prevalent in online offerings such as Wikipedia and e-prints. Can one seriously rely on Wikipedia and e-print servers as clear and valid guides to the foundation and breadth of quantum information science? Are those the sources where researchers outside the area can obtain an organized overview of the subject? The unevenness and unreliable nature of the perspectives offered on free portions of the Web are reasons why I chose to write *Quantum Information* in the first place.

Another aspect of my monograph, also clearly noted in its preface, is that the book discusses "a number of pertinent . . . results from earlier decades of the twentieth century . . . because they will likely prove important to future progress in both quantum mechanics and information theory." Terhal's only mention of that aspect was apparently her reference to the unspecified portion of the text she considered "mathematical and superfluous detail." My reason for including that extra material is to show the extent to which quantum information science is grounded in fundamental physics and is capable of making great contributions to quantum foundations, provided the physics remains squarely in view.

Like a standard quantum measurement, the effect of this lukewarm book review is, in all likelihood, irreversible. Fortunately, though, many who have carefully read the book's preface and who, therefore, have understood the entirety of its purpose and constraints have expressed their satisfaction with the book over the 16 months since its publication. Those readers have been

glad to have a reliable source to guide them into this exploding body of literature.

**Gregg Jaeger**  
(jaeger@bu.edu)  
Boston University  
Boston, Massachusetts

## Policy analyst or crusading journalist

In the December 2007 Issues and Events story entitled "Climate Changes for Peace Prize Winners" (PHYSICS TODAY, December 2007, page 22), the author twice quotes George Monbiot on the nature of the Intergovernmental Panel on Climate Change and the current status of the debate on global climate change. He is identified as "an environmental policy analyst at Oxford Brookes University in the UK." This is a misleading description. Monbiot's claim to prominence is based on his activities as a crusading journalist for a variety of broadly left-wing causes and on his political activism in the antiglobalization movement. I doubt that he himself would claim to be an objective academic, which is, nevertheless, the impression created by the PHYSICS TODAY piece.

**Thomas C. Halsey**  
Houston, Texas

## Making lemonade in the library

George Kattawar's review (PHYSICS TODAY, February 2008, page 64) of the book *Iridescent Colors of Insects* by Serge Berthier (Springer, 2007) may have set a record for the number of negative comments. After a brief review of the author's previously published French version, Kattawar goes on to point out that "Berthier's book could have been a very nice piece of work if it had been proofread to correct the plethora of errors in grammar, history, and references to figures." And that is only the first sentence of about 15 column inches of critical comments.

One wonders if there should be a lemon law for books.

**Dana L. Roth**  
(dzrlib@library.caltech.edu)  
Millikan Library  
California Institute of Technology  
Pasadena, California ■