ters defined distinct proton knock-out events, while a third, affectionately called BigBite, caught correlated protons that recoiled over a wide cone of solid angles. Behind BigBite sat yet another detector comprising an array of scintillators to catch recoiling neutrons.

That unique arrangement of detectors allowed the Jefferson Lab team to present its data in the form of pair fractions (see figure 2). About 20% of nucleons in ¹²C form SRC pairs, a percentage consistent with 1980s-era spectroscopic results. And, of those, roughly 96% appear in the form of neutron–proton pairs, a confirmation of the BNL analysis.

Tensor force

The interaction between two nucleons has two preeminent features: a strong repulsion at short distances, and a strong coupling between the nucleons' spins and their spatial separation at distances greater than a femtometer. That tensor character is important for binding the proton and neutron in the deuteron and for making its ground state spherically asymmetric, in marked contrast to systems like the hydrogen atom, where the radial

Coulomb attraction results in a spherical ground state.

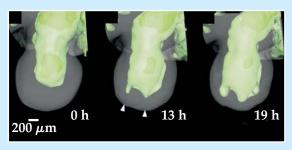
The tensor force is also responsible for the prevalence of neutron-proton pairs over proton-proton and, by inference, neutron-neutron ones when the relative momentum between the nucleons in the pair is large. To obey the Pauli principle at such short range, two like nucleons must be antisymmetric under exchange of spins, while a neutron and proton pair can be symmetric in spin. The unlike nucleons can, like a compact deuteron, thus experience an attraction, while those of like nucleons cannot.3 "It's no surprise that tensor forces are behind the asymmetry we measure," says Jefferson Lab physicist Douglas Higinbotham, "though the amount [of that asymmetry] is sure to constrain future nuclear-structure models."

Piasetzky likens SRC pairs to "a poor man's neutron star." Indeed, the transient fluctuations that briefly pair up nucleons push their local densities to some five times their typical value of 0.16 nucleon/fm³. The Jefferson Lab collaboration argues that if neutron stars contain even the small 5–10% of protons that theorists think they do, the strong

neutron-proton interactions will cause the momentum distributions of nucleons in the stars to differ from that of an ideal Fermi gas. The challenge is to understand the consequences.

Equally intriguing is how the structure of nucleons inside nuclei should change when densities are greater still and three-body or higher correlations emerge from the data. In a few years Jefferson Lab expects to upgrade its facility to one that can fire 12-GeV electrons at a nucleus. Eventually, comments Sargsian, experiments may reach a momentum-transfer regime in which nucleons lose their individual identities and dissolve into a sea of quarks. Currently, the short-range repulsion that preserves nucleon identity is a mystery. "Theorists now just draw it in by hand."

Mark Wilson


References

- 1. E. Piasetzky et al., *Phys. Rev. Lett.* **97**, 162504 (2006).
- 2. R. Subedi et al., Science 320, 1476 (2008).
- See R. Schiavilla et al., *Phys. Rev. Lett.* 98, 132501 (2007) and M. M. Sargsian et al., *Phys. Rev. C* 71, 044615 (2005).
- 4. R. Shneor et al., *Phys. Rev. Lett.* **99**, 072501 (2007).

could allow a targeted examination of the sample and possibly even permit the spectroscopic study of single molecules. (M. Moewe et al., Appl. Phys. Lett., in press.)

—PFS

Quantifying tissue development. Biology, dauntingly complex as it is, nevertheless is slowly becoming more quantitative and thus more amenable to testable models and predictions. For example, an embryo's various organs and body parts develop at different times and at different rates. How can one come up

with a rigorous model for the process? James Sharpe (Centre for Genomic Regulation, Barcelona, Spain) and his colleagues are beginning to address that question with a new imaging technique: time-lapse optical projection tomography. Their setup involves taking live tissue from a mouse embryo and transferring it on tungsten pins to a nutrient- and oxygen-rich chamber. The pins are on a mount that is magnetically attached to a micromanipulator, which rotates the tissue through 360° in 100–200 steps. Labeling gene activity within the tissue with green fluorescent protein and using deep-penetrating 800-nm light, the researchers acquired a full set of images every 15 minutes. The images here of three-dimensional surface renderings show the dynamic activity of a gene involved

in controlling development of the limb, as it buds out from abdominal tissue, at 0, 13, and 19 hours. The researchers quantified the global dynamics by measuring the surface expansion through tissue velocity vector fields. Surprisingly, the limb buds didn't simply expand radially but twisted and showed other spatial variations as they grew. In other experiments, Sharpe and company imaged dynamic changes in spatial gene-expression patterns in growing limbs and studied the early development of embryonic mouse eyes. (M. J. Boot et al., Nat. Methods, advance online publication, doi:10.1038/nmeth.1219, 30 May 2008.)

Heat goes ballistic. At the May Conference on Lasers and Electro-Optics in San Jose, California, University of Colorado graduate student Mark Siemens reported on studying how tiny parcels of heat, called phonons, spread in a crystal. He and his colleagues used a near-IR laser to heat a grating of nickel lines—each 20 nm high and 1 μ m wide—grown on a sapphire substrate that acted as a heat sink. Then, by recording the transient diffraction of 10-fs pulses of coherent soft x rays from the sample, the researchers could monitor with picometer (10^{-12} m) precision the displacement of the heated nickel nanostructure. The transport of heat is considered "ballistic" if the characteristic distance over which a phonon moves—about a micron in this case—is smaller than its mean free path before scattering off another phonon. At room temperature a typical phonon's mean free path in sapphire is a mere 150 nm but grows to more than a micron when the sample is cooled below 130 K. At that temperature the data show a clear transition from thermally diffusive to ballistic behavior. One reason for trying to understand how heat moves away from a nanoscale interface, says Siemens, is to manage the thermal environment of future advanced high-speed transistors.

www.physicstoday.org July 2008 Physics Today 17