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Medieval dynamics

Thomas Bradwardine’s 14th-century dynamical law may not be well known
today, but it greatly influenced European scholars through the late Middle
Ages and into the Renaissance.

Edith Sylla is a history professor at North Carolina State University in Raleigh.

In his Specimen dynamicum of 1695, Gottfried Wil-
helm Leibniz, co-inventor of the calculus, proposed and
named a “new science of dynamics” that would include
forces or the causes of motion as well as their effects.! But
even if not given that name, a science of dynamics had been
in existence since the 14th century.? Its foundations were laid
in 1328, when Thomas Bradwardine’s De proportionibus veloc-
itatum in motibus (On the Proportions of Velocities in Motions)
presented a mathematical law linking any velocity to the pro-
portion of motive to resistive forces causing it.

Aristotle, in Book VII of his Physics, had discussed a few
cases relating forces, the bodies moved, distances, and times.
He said, for instance, that if a given force moves a resisting
body over a certain distance in a given time, then in the same
time the same force will move half the resistance over twice
the distance, “for thus the rules of proportion will be ob-
served.” But Aristotle did not express the relationship in gen-
eral terms. More importantly, he restricted the
inferences that could be made, and said, for in-
stance, “It does not follow that, if a given motive
power causes a certain amount of motion, half
that power will cause motion either of any par-
ticular amount or in any length of time: other-
wise one man might move a ship.”

It is frequently said that Aristotle took a
qualitative and common-sense approach to nat-
ural philosophy, not a mathematical one. Brad-
wardine, in contrast, emphasized that he was
taking a mathematical approach (see the box on
page 52). By expressing his law not in terms of
forces or resistances separately but in terms of
“proportions of greater inequality” (that is, pro-
portions of a larger quantity to a smaller one), he

Figure 1. Nicole Oresme (1323-82) received
his master of theology degree from the Univer-
sity of Paris in 1355. He is perhaps the most
brilliant of the many European scﬁohrs who
were influenced by Thomas Bradwardine’s

De proportionibus velocitatum in motibus.

The original portrait is in the Bibliotheque
Nationale, Paris.
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could rightfully assert that his law could deal with all varia-
tions in such proportions and with all velocities.

From the moment Bradwardine’s work became known,
the “proportions of velocities in motions” —the mathemati-
cal science of motion—found a place in university curricula.
And it kept that place for the next two centuries.> At Oxford
University, the line of inquiry into dynamics that Bradwar-
dine had opened was pursued through the mid-14th century
by the likes of William Heytesbury, John Dumbleton, and
Richard Swineshead, who are together referred to as the
Merton school or the Oxford Calculators.*

At the University of Paris, works de proportionibus were
written by Albert of Saxony and Nicole Oresme (depicted in
figure 1) in the 14th century. In 1509 in Paris, Alvaro Tomas
of Lisbon published his large and impressive Liber de triplici
motu proportionibus annexis magistri Alvari Thome Ulixbonensis
philosophicas Suiseth calculationes ex parte declarans (Book on the
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The essential role of mathematics

Thomas Bradwardine’s De proportionibus velocitatum in
motibus (On the Proportions of Velocities in Motions), pub-
lished in 1328, begins with a self-contained primer on the
mathematics of proportions. As Bradwardine explains,®

Since each successive motion is proportionable to
another with respect to speed, natural philosophy,
which studies motion, ought not to ignore the pro-
portion of motions and their speeds, and, because
an understanding of this is both necessary and ex-
tremely difficult, nor has as yet been treated fully
in any branch of philosophy, we have accordingly
composed the gllowing work on the subject.
Since, moreover (as Boethius points out in Book |
of his Arithmetic), it is agreed that whoever omits
mathematical studies has destroyed the whole of
philosophic knowledge, we have commenced b
sefting ﬁ)rth the mathematics needed for the fos{
at hand, in order to make the subject easier and
more accessible to the student.

Triple Motion, Together with Proportions, by Alvaro Tomds of
Lisbon, Explaining in Part the Philosophical Calculations of
Swineshead). Fifteen years later, an abbreviated version of
Bradwardine’s De proportionibus was printed, along with
short texts on logic, as part of handbooks for undergraduates
(Libelli sophistarum) at Oxford and Cambridge universities. In
the late 17th century, Leibniz praised Swineshead, called “the
Calculator,” for beginning to introduce mathematics into
scholastic philosophy.’

Bradwardine’s doctrine on the proportions of velocities
in motions was a significant achievement. According to Brad-
wardine, a simple and universal mathematical law describes
dynamics: Velocities vary as the proportions of motive to re-
sistive forces causing them. In stating that law, Bradwardine
overcame the limitations of what had traditionally been un-
derstood as the Aristotelian position on dynamics. At the
same time, Bradwardine could plausibly claim that his func-
tion represented what Aristotle really intended. In fact, his
view agreed with Aristotle’s in cases in which one starts with
a force double the resistance and when the force is then dou-
bled; the proportion is doubled, and so the velocity will be
doubled in both Aristotle’s view and Bradwardine’s. More-
over, the compendium on the mathematics of proportions
that Bradwardine placed at the start of De proportionibus
proved its value as a core text of the university curriculum.
Given those factors, it is no wonder that Bradwardine’s
De proportionibus had such a Europe-wide and long-lasting
influence.

Compounding proportions

Mathematical physics expresses physical relationships in
mathematical terms. To contribute to mathematical physics,
one may gather new empirical information about the physi-
cal world; develop or improve the conceptual apparatus
through which mathematics is to be applied to the world, by
defining, for instance, what is meant by “force” or “velocity”;
invent new mathematical tools such as the calculus; or show
how to apply previously existing mathematics in a new way.
Bradwardine’s originality in founding medieval dynamics
fell into the last of those categories: He showed how the math-
ematics of proportions, which already existed in the disci-
pline of music—the mathematical science that along with
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arithmetic, geometry, and astronomy formed the quadrivium
of mathematical sciences studied in medieval schools and
universities—could be applied to dynamics.

For Bradwardine, a proportion is a relation with respect
to size between two quantities that have the same dimen-
sions.® One can have a proportion between two quantities a
and b, or one can think of a series of terms a, b, ¢, and so forth,
with proportions between successive terms. On that under-
standing, a proportion is not an indicated division or fraction
but rather a relation in which the two quantities remain two.
For example, when plucked together, two similar strings
under similar tension with lengths in a proportion of 2 to 1
produce sounds in the consonance of an octave. In their pro-
portion to each other, the two strings remain two.

Now consider three quantities of the same kind arranged
to decrease monotonically—for example, the lengths of
strings sounding in a musical chord. In Bradwardine’s lan-
guage, one would say that the proportion of the first to the
third is “compounded” (composita) of the proportion of the
first to the second and the proportion of the second to the
third. Figure 2 shows how medieval music theorists illus-
trated the compounding of musical intervals. In one applica-
tion, an octave corresponding to a ratio of 12 to 6 is shown to
be equal to two musical fourths corresponding to proportions
of 12 to 9 and 8 to 6, plus a musical tone corresponding to the
proportion of 9 to 8.

The Latin translations of Euclid’s Elements available in
the Middle Ages, in particular the Campanus edition that
Bradwardine used, contained no definition of compounding
proportions. But compounding was used in the proof of
Proposition 23 of Book VI of the Elements. There, in Thomas
Heath’s translation, Euclid says that “the proportion of K to
M is compounded out of the proportion of K to L and of [the
proportion of] L to M.”” Lacking a definition of compound-
ing, Bradwardine used Euclid’s definitions of duplicata and
triplicata from Book V of the Elements, in which Euclid wrote,
“If there are three continually proportional quantities, the
proportion of the first to the third is said to be the proportion
of the first to the second duplicated (duplicata).”®

Bradwardine interpreted Euclid’s “duplicate” (duplicata)
as meaning “double,” as is evident in the first theorem in
De proportionibus:

If a proportion of greater inequality between a
first and a second term is the same as that be-
tween the second and a third, the proportion of
the first to the third will be precisely double
(dupla) the proportion of the first to the second
and of the second to the third.®

Similarly in his second theorem, which involves four, five, or
more terms in continuous proportionality, Bradwardine says
that the proportion of the first to the fourth term is triple
(tripla) the proportion between any two successive terms, the
proportion of the first to the fifth is quadruple (quadrupla),
and so forth.

Bradwardine’s way of handling proportions and their
“addition” was more flexible and powerful than is sometimes
recognized. It easily allowed for the compounding of un-
equal proportions, whether or not they could be expressed as
proportions of integers. According to Bradwardine:

Given any two extreme terms with an interme-
diate term between them having a proportion to
each extreme, the proportion of the first term to
the third is compounded of (composita ex) the pro-
portion of the first term to the second and of the
proportion of the second term to the third.®
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Figure 2. The compounding of musical proportions was a standard technique of medieval music theory. (a) In this illus-
tration, labeled Bis diapason quadrup/a collatione perfecfa, the middle line, labeled with the Roman numerals for 2, 4,
and 8, represents an interval of two octaves. The numbers 2 and 4 that define the left-hand octave are connected by
arcs labeled “double” and “octave,” as are the numbers 4 and 8 of the right-hand octave. The whole line is linked by
arcs labeled “quadruple” and “two octaves.” Thus the 8 to 2 proportion of the two octaves is illustrated as being com-
pounded of the proportions 8 to 4 and 4 to 2. (b) The bottom line, labeled with roman numerals for 12, 9, 8, and 6,
represents an octave. The arc between 12 and 6 says dupla, diapason, or “double [proportion], octave.” The arcs

from 12 to 8 and from 9 to 6 say sesquialtera, diapente, or “the proportion of 3 to 2, the musical fifth.” The arcs from
12 to 9 and from 8 to 6 say sesquitertia, diatesseron, “the proportion of 4 to 3, the musical fourth.” The arc—actually a
gothic arch formed by bits of the other arcs—connecting 9 to 8 says sesquioctavus, tonus, “the proportion of 9 to 8, the
tone.” Thus the octave is shown to be compounded of the musical fifth and fourth, or alternately of two fourths and @
tone. (Adapted from ref. 15, fig. 100; the original source is Boethius, De institutione musica.)

In applying this supposition to dynamics and using the
mathematical foundation he had previously set out, Brad-
wardine could express his dynamic law in supremely simple
form: The velocities in motions follow the proportions of
forces to resistances. So, for instance, when the proportion of
force to resistance is doubled or tripled, the velocity is dou-
bled or tripled. Here it must be understood that, for exam-
ple, double the proportion 3 to 1 is the proportion 9 to 1, and
triple the proportion 3 to 1 is the proportion 27 to 1. On the
other hand, doubling or tripling a velocity corresponds to
multiplying by 2 or 3.

Beginning with Anneliese Maier,’ the first modern his-
torian to understand what Bradwardine intended, scholars
have represented Bradwardine’s law using logarithmic or ex-
ponential equations equivalent to v = log(F/R). That is, the
velocity increases as the logarithm of the ratio of force to re-
sistance. Figure 3 shows Bradwardine’s law and contrasts it
with Aristotle’s view. Neither logarithms nor the mathemat-
ics of exponents had been developed in the 14th century,
however, so medieval scholars did not think of Bradwardine’s
law in such terms. Although we may think we understand
Bradwardine’s function better by expressing it logarithmi-
cally or exponentially, there is an important reason not to ex-
plain it that way. Namely, the more modern formulation con-
ceals the simplicity of Bradwardine’s law as expressed in his
own terms. And that simplicity was one of the greatest rea-
sons for its rapid adoption by Bradwardine’s contemporaries,
who then proceeded to show in practice how, given one pro-
portion of force to resistance and the velocity caused by it,
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other velocities could be calculated for other proportions of
force to resistance.

A problematic discontinuity

Bradwardine’s primary argument against the traditional
Aristotelian position was fundamentally a mathematical ar-
gument: The Aristotelian view does not deal adequately with
its boundary condition that the velocity vanishes when the
force and resistance are equal. If taken to apply beyond the
few examples he gives, Aristotle’s theory of the relations of
movers, things moved, distances, and times predicts a non-
vanishing velocity for all cases in which the force is greater
than the resistance, but then a sudden halt when force equals
resistance. As a result, motions would start and stop with a
jerk and some low velocities would not correspond to any
proportion of force to resistance. In figure 3, for example, the
minimum nonvanishing Aristotelian velocity is 1.

But small velocities are known to occur. Moreover, Brad-
wardine argues, one can see that a small velocity increases in
greater proportion than the force, an observation that also
goes against the Aristotelian opinion. In making his argu-
ment, Bradwardine appeals to observations of men lifting
weights and to what may happen in a weight-driven clock,
but he does not check his view and alternatives to it against
experiment.®

The sudden discontinuity when force equals resistance
can be avoided if velocity depends on the excess of force over
resistance. Bradwardine rejects that opinion on the grounds
that it is inconsistent with experience. It implies, for instance,
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Figure 3. Bradwardine’s law, that velocities in motions

follow the proportions of forces to resistances, would be

expressed as a logarithmic relation in modern language.

The graph contrasts Bradwardine’s dynamical law with

Acristotle’s linear relation when the force is greater than
the resistance.

that a strong man will move a large object resisting him faster
than a boy or a fly will move smaller objects, but boys and
flies carrying small objects can move very fast.® Having re-
futed the other possibilities, Bradwardine was left with his
own theory.

In brief, Bradwardine’s law appeared beautifully simple,
given his approach to compounding proportions as addition,
and it was mathematically superior to the Aristotelian theory
because it avoided an implausible discontinuity in velocity
as force comes to equal resistance. What remained was to
show how it could be used in practice. In the years that fol-
lowed Bradwardine’s De proportionibus, many students and
teachers studied the mathematical theory of proportions it
expounded and drew implications from Bradwardine’s law.
John Dumbleton, in his mid-14th-century work Summa logi-
cae et philosophiae naturalis (Sum of Logic and of Natural Philos-
ophy), represented Bradwardine’s function in terms of two
parallel lines. As shown in figure 4, one line represented the
“latitude of motion,” a linear scale with zero at one end; the
other line represented the “latitude of proportion,” with the
proportion of unity at one end and with equal intervals cor-
responding to equal proportions. By comparing the numbers
on the line of motion to those opposite on the line of pro-
portion, one can read off the velocity that results from a given
proportion of force to resistance.

Swineshead, in his Calculationes (Calculations, circa 1350),
showed how to calculate other pairings of proportions of
force to resistance with the corresponding velocities, given
one such pairing." In Treatise XIV, Swineshead begins by in-
dicating how the proportions of force to resistance increase.
His first rule is

Whenever some power increases with respect to
a constant resistance, as great a proportion is ac-
quired with respect to that resistance as the
power itself becomes greater, or in other words
with the same meaning: it acquires as great a pro-
portion with respect to itself as it acquires with
respect to the resistance.
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Swineshead’s fourth rule is

Whenever some power increases or decreases
with respect to two resistances, whether they are
equal or unequal, but unchanging, the motion
will increase or decrease with equal velocity with
respect to either.

In other words, since in either case the added or subtracted
proportion (as understood in Bradwardine’s sense of com-
pounding as addition) is the proportion of the new force to
the old one, the same change in velocity will occur. In man-
uscripts of the Calculationes, scribes or owners represented
Swineshead’s rules with numbers distributed along lines and
connected by arcs just as musical intervals were represented
in music manuscripts. Figure 5 gives examples.

On the basis of his rules, Swineshead builds up ever-
more-complicated cases dealing not only with a single change
but with continuous changes in the proportion of force to re-
sistance over time and with the resulting continuous changes
in velocity. He is especially interested in uniformly increasing
or decreasing velocities. To analyze those cases, he first posits
a homogeneous resisting medium whose resistance increases
over time in such a way as to cause a uniformly decreasing
velocity in a moving body. He then substitutes for that an un-
changing but inhomogeneous medium that has, at every
point, a resistance equal to the resistance that the first, chang-
ing medium had when the body reached the corresponding
point. Swineshead could not represent analytically or mathe-
matically how that resistance varies over distance; he could
describe the variation only in the above, roundabout way.

Such cases led to paradoxes for Swineshead’s and Brad-
wardine’s views, paradoxes that also arise for the traditional
Aristotelian position. Suppose a body is moving through a
medium with varying resistance to the motion. The instanta-
neous velocity ascribed to the body using Bradwardine’s
function and the force and resistance being encountered at
any instant (called the measure of velocity with respect to
cause, or tanquam penes causani) may not be consistent with
the velocity as measured by the distance traversed over time
(called the measure of motion with respect to effect, or
tanquam penes effectum). Tomas addresses the paradox explic-
itly in the Liber de triplici motu of 1509, along with problems

Al6 B12 C8 D4 EO
Latitude of motion
corresponding to the

proportion below.

Hie6 F8 G4 12 K1
Latitude of proportion
corresponding to the
motion above.

Figure 4. Latitudes of motion and proportion repre-
sent Bradwardine’s law. The sketch here is based on
an illustration from a mid-14th-century work by John
Dumbleton. On this pair of latitude lines, the propor-
tion of force fo resistance H causes the velocity A, the
proportion F causes the motion B, and so on. Evidently,
each doubling in proportion contributes a fourth part
of the velocity A. (Adapted from ref. 16.)
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Figure 5. Swineshead’s rules, as given in his Calculationes (Calculations), could be expressed in terms of lines and
arcs. In these drawings, Swineshead’s rule 1 is represented at the left and rule 4 is represented fourth from left. The
numbers for rule 4 should be 12, 6, 4, and 2. Note how similar these diagrams are to the music-theoretic diagrams in
figure 2. (Adapted from ref. 15, fig. 256; the original manuscript is at the Biblioteca Universitaria in Pavia, Italy.)

that result when the resistance of a medium is supposed to
increase abruptly and the interface between lesser and
greater resistances is itself supposed to be moving, possibly
trapping a moving body at the interface.

The scope of medieval dynamics

After establishing his dynamical law in De proportionibus,
Bradwardine went on to discuss how to measure velocities of
rotation of a spherical shell—obviously with the heavenly
spheres in mind. Although he referred to the opinion that one
ought to calculate something like a mean speed for rotating
bodies, Bradwardine decided instead to measure motions of
rotation by the distance traversed by the body’s fastest mov-
ing point. As applied to the heavens, the decision between
the alternative measures perhaps did not matter because it
was often assumed that the usual relations of force, resis-
tance, and velocity do not apply in the case of the heavenly
spheres. The Oxford scholars who followed Bradwardine’s
program in dynamics largely also followed him in measur-
ing the speed of irregularly moving bodies by the distance
traversed by the fastest moving point.

Some scholars, however, argued that the speed of a ro-
tating radius should be taken to equal the speed of its mid-
point, or equivalently, half the speed of its outermost point.
That result was a corollary of the so-called Merton mean
speed theorem, more famous for its application to motion
uniformly accelerated in time. In that case the theorem said
that a uniformly accelerated motion will traverse a distance
equal to the distance that would be traversed in the same time
with a uniform velocity equal to that at the middle instant of
the motion. At Paris, Oresme represented the theorem geo-
metrically, and it was later used without attribution by
Galileo Galilei."

Oresme used Bradwardine’s function to try to persuade
Charles V and his courtiers to be skeptical of astrologers.
Even admitting that the same sorts of earthly events may hap-
pen when the planets are in the same celestial configurations,
Oresme reasoned on the basis of Bradwardine’s function that
planetary motions are most probably incommensurable,
which means any given configuration of the planets in given
positions in the heavens would never be repeated.” To make
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the case, he had to consider how many “proportions of pro-
portions” could be represented by proportions of integers.
The proportion of 8 to 1, for instance, is three halves to the
proportion of 4 to 1 because the proportion of 4 to 1 is com-
pounded of two proportions of 2 to 1 and the proportion of
8 to 1is compounded of three proportions of 2 to 1. It is much
more probable, Oresme said, that any two proportions of
force to resistance will not be related in a proportion of inte-
gers than that they will be. To the argument that in heavenly
motions the sorts of forces and resistances that apply to ter-
restrial motions are not applicable, Oresme simply indicated
some other factors analogous to force and resistance would
apply.”®

In the two centuries during which Bradwardine’s De pro-
portionibus continued to be influential, scholars not only
learned to work with the mathematics of proportions and not
only discussed how to measure local motions, but they also
studied limits, such as first and last instants of motion and
maxima and minima of powers. Is there, for instance, a max-
imum weight that a man can carry or a minimum weight that
he cannot carry?

More importantly, medieval dynamics was assumed to
apply as much to motions of augmentation, such as growth
of animals or the rarefaction of air, and to motions of alter-
ation, such as heating and cooling, as to local motions.
Scholars asked whether the rate of augmentation depends
on the net quantity added or on a proportional increase.
Would adding an inch to a seedling and to a tree be equal
augmentations?

With regard to rates of heating, scholars asked whether
the rate of heating with respect to effect depends only on the
intensity of heat gained, and if not, whether it depends on
changes in the intensity of the hottest part of the body only
or whether it also depends on how much of the body is
heated to varying degrees. Does the motion with respect to
cause depend only on the degree of heat of the agent, or does
it also depend on the extent of the agent or even on the quan-
tity of heat within the agent? And is the resistance of the body
being acted on measured by its degree or also by the size of
the body acted on? Considering a hot body in contact with a
cold one raised a theoretical problem because it was assumed
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that when a hot body warms a cold one, the cold body si-
multaneously cools the hot body. How can each of the two
bodies have a force greater than resistance, supposedly nec-
essary to cause motion?

Compounding reinterpreted

It might be supposed that Bradwardine’s dynamics was over-
thrown along with Aristotle’s view upon adoption of the law
of inertia. Like Aristotle, Bradwardine assumed that motion
must have a cause or force producing it. But ironically, it was
not the lack of empirical fit with new physics that led to the
rejection of Bradwardinian dynamics; rather, it was the math-
ematics in which Bradwardine expressed his dynamics.
Bradwardine’s law rested on understanding the com-
pounding of proportions as addition. He had relied on Cam-
panus of Novarra’s translation of Euclid’s Elements from
the Arabic, which was the translation published by Erhard
Ratdolt in Venice in 1482. Later editions based on Greek man-
uscripts and the new Latin translations published by Ba-
tolomeo Zamberti (1505) and Federico Commandino (1572)
introduced into Euclid’s Book VI a definition of compound-
ing proportions that Renaissance mathematicians mistakenly
believed to be authentically Euclidean: In Heath'’s translation,
“a ratio is said to be compounded of ratios when the sizes of
the ratios multiplied together make some [? ratio, or size].””
As Heath remarks, “It is beyond doubt that this definition of
ratio is interpolated.”” Nevertheless, the interpolated defini-
tion started a landslide in which the understanding of com-
pounding as multiplication rapidly buried the view of
compounding as addition. Once compounding came to be
understood as multiplication, and proportions, now rebap-
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tized as ratios, came to be understood as indicated divisions
of numbers, the life of Bradwardine’s dynamical law of mo-
tion was at an end —more than a century and a half before it
might have been disproved on physical grounds with the ac-
ceptance of Newton’s laws.

In the 16th and 17th centuries, mathematicians, who
identified ratios with fractions or rational numbers, began to
assert that it is an abuse in mathematics to say that when a
proportion is compounded with itself, it is “double” its orig-
inal." For this reason, Bradwardine’s law was not even a con-
tender by the time of Galileo, who argued against traditional
Aristotelians rather than against the dynamics of the follow-
ers of Bradwardine, Swineshead, Oresme, and Tomas. That
neglect, however, was more or less an accident of the history
of mathematics. After all, the definition of compounding as
multiplication was not authentically Euclidean, and the un-
derstanding of compounding as addition was a viable alter-
native approach, especially when proportions were applied
to quantities of all kinds and not only to numbers.

The development of mathematics in the 16th century,
however progressive from its own point of view, need not de-
tract from our admiration for what Bradwardine and other
late medieval university scholars attempted to do in dynam-
ics two centuries earlier. They deserve to be recognized for
creating and sustaining a program of study devoted to a
mathematical science of the causes and effects of motions—
that is, to founding a mathematical science of dynamics.
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