3. N. D. Mermin, It's About Time: Understanding Einstein's Relativity, Princeton U. Press, Princeton, NJ (2005), p. 22.

David Mermin *Ithaca, New York*

Cool shades for hurricanes?

Kerry Emanuel's Quick Study of hurricane formation (PHYSICS TODAY, August 2006, page 74) inevitably lends itself to thoughts about the disruption of those storms. Weakening, as opposed to outright dissipation, might be easier to achieve and ultimately preferable, so that the energy involved can be released in a semicontrolled manner, as opposed to its being shunted elsewhere. Past ideas such as reducing evaporation or artificial upwelling of cold ocean water in the path of a hurricane would be case-by-case, resourceintensive operations that may well reduce storm intensity.

As a more far-fetched thought, have any calculations been undertaken to model a large, space-based sun shade to cut off the solar energy input to a storm system? If the Moon, approximately 3470 km in diameter and orbiting at around 384 500 km from Earth, can cast a shadow some 200 km wide during a solar eclipse, wouldn't a much smaller structure orbiting closer to Earth be sufficient to completely shade the eye of a typical Atlantic hurricane? Or perhaps more effectively, it could shade the early stages of storm formation farther out in the ocean. Using these approximate eclipse values to determine a working relationship between shade structure size, orbital height, and desired ground shadow yields roughly a 65-km-wide structure in Earth orbit at 3200 km. A real-world test of that relationship might be possible if there exist historic wind measurements observed during the timely intersection of hurricane and solar eclipse paths.

Granted, boosting the appropriately sized shade into orbit would be costly, but it could be used on numerous storms. Composed of ultrathin sections, each rigged with narrow, inflatable spars to create rigidity, a circular structure could be unfurled like an umbrella while a square structure could be unrolled. As with any space structure, the shade would wear with time, but even punctures from micrometeors or space junk would not necessarily degrade performance. Each section could be replaceable, and the spars self-sealing. Given the current state of materials sci-

ence, this idea does not seem out of the realm of possibility. However, total weight might be problematic and necessitate multiple launches. Once it is deployed, common satellite systems could maintain it in geosynchronous orbit and allow for steering and tilting for variable storm tracks. A geostationary orbit might be optimal but unlikely due to limited real estate in that orbit and to the size of the shade.

Michael R. Binkley (mbinkley@davey.com) Davey Tree Expert Company Kent, Ohio

Emanuel replies: Michael Binkley advances an interesting idea to deprive tropical cyclones of their power source. In principle, it would work, if one could cool a strip of ocean roughly 100 km wide along the path of the cyclone. For average conditions in the tropics, a cooling of 2.5 °C would eliminate the necessary thermodynamic disequilibrium altogether, so even a 1 °C cooling would have a noticeable effect.

The technical difficulty here is one of time scale. The upper tropical ocean is typically well mixed by turbulence, through a depth of roughly 50 meters. To cool that layer by 2.5 °C, one would need to shut off sunlight for about 30 days, and roughly a week to achieve a 1 °C cooling. That is far longer than the time scales over which storm tracks can be predicted, and so one would be forced to cool a vast region of the tropical Atlantic Ocean. That would no doubt have unforeseen and probably undesirable consequences.

Given the high toll that hurricanes extract in human suffering, it is certainly worth contemplating means by which they might be tamed.

Kerry Emanuel (emanuel@texmex.mit.edu) Massachusetts Institute of Technology Cambridge

Difficult deterrence decisions

The problem with Sidney Drell's rekindling the vision of Reykjavík in "The Challenge of Nuclear Weapons" (PHYSICS TODAY, June 2007, page 54) is that the steps advocated by George Shultz, William Perry, Henry Kissinger, and Sam Nunn cannot be carried out unilaterally or bilaterally. Even if the US and Russia were willing to abide by the program developed at the Hoover Institution, there is little indication that more volatile nuclear states, such as

Cryogen Free Magnet Systems

- Magnetic fields up to 12T
- Cool down time from room temperature < 24 hours
- Sweep rates up to 1 T/min
- Integrated cryogen free variable temperature insert

Full Details are at:
www.scientificmagnetics.com
www.iceoxford.com
Phone: 978-256-2558

Phone: **978-256-2558 APS Booth #310**

India and Pakistan, would agree to do so; in fact, those two nations are rapidly expanding their nuclear arsenals as of this writing. Nor is it clear that following the Hoover prescription will in any way deter rogue states such as Iran from going nuclear.

Like it or not, the best option for the US is to continue to maintain a large number of nuclear weapons, with the clear policy message that the perpetrator of any nuclear attack will suffer instant and massive retaliation. The same fate should befall any state that has supplied a nuclear weapon to a terrorist group. Identifying the supplier is a nontrivial task, but rapid progress is being made on nuclear forensics and, at least at present, there are only a small number of potential culprits.

Lewis A. Glenn (lewglenn@gmail.com) Danville, California

Drell replies: I agree that the steps in my article "cannot be carried out unilaterally or bilaterally" with Russia. I emphasized the need to make the goal of a world without nuclear weapons into an international diplomatic initiative at the highest level.

However, I disagree with Lewis Glenn's claim that our best option is to maintain a large number of nuclear weapons capable of massive retaliation in response to a nuclear attack. Our gravest danger today, due to the global spread of nuclear technology, is that dangerous hands, including suicidal terrorists, will acquire these horrific weapons. Reliance on thousands of them for deterrence based on massive destruction is becoming decreasingly effective and increasingly hazardous. A better path is for nuclear powers, led by the US and Russia, who own most of the nuclear weapons, to work internationally to prevent nuclear proliferation and initiate practical steps listed in my article toward an ultimate goal of zero weapons for all. Difficult yes, but far superior to the alternatives.

Sidney Drell Hoover Institution on War, Revolution, and Peace Stanford, California

Encouraging young PhDs to jump boundaries

Lisa Randall's Quick Study piece in the July 2007 issue of PHYSICS TODAY (page 80) makes very good reading. It reminded me of a private discussion I had

a couple of years ago with a postdoc specializing in string theory, who had already published 10 papers on the subject. He started by explaining the idea of branes and the strings that connect them, and he made a drawing like the one in Randall's article. I was immediately reminded of dislocations in solidstate physics, about which my colleague had no idea. Shower curtains might be a helpful model, at least for the geometric description. But dislocations offer a situation in the full context of crystal physics. The "gravitybrane" and the "weakbrane" are compared with two surfaces of the crystal, and the "bulk energy," which is contained in the lattice between the two surfaces, depends on the lattice's symmetry and elastic properties. The dislocation is a onedimensional defect that connects the two surfaces and is essential for crystal growth as well as for plastic deformation, depending on its Burgers vector.

Nowadays young physicists don't have a chance to learn things in unrelated areas. After getting a PhD in quantum field theory, I got a job at the geophysical laboratory of Shell Oil Co, where I worked from 1953 to 1960. My first task there was to learn something about dislocation theory, because the laboratory also did high-pressure experiments on plastic flow for minerals like calcite and dolomite. Such jumps between the specialties of physics do not happen anymore, and the blame belongs equally to university professors and industry leaders. It is up to the young PhDs to ask for such changes in their experience. All three groups might find those jumps helpful in the application of mathematics to physics.

Martin C. Gutzwiller (moongutz@aol.com) Yale University New Haven, Connecticut ■

Rights & Permissions

You may make single copies of articles or departments for private use or for research. Authorization does not extend to systematic or multiple reproduction, to copying for promotional purposes, to electronic storage or distribution (including on the Web), or to republication in any form. In all such cases, you must obtain specific, written permission from the American Institute of Physics.

Contact the

AIP Rights and Permissions Office,
Suite 1NO1,
2 Huntington Quadrangle,
Melville, NY 11747-4502
Fax: 516-575-2450
Telephone: 516-576-2268
E-mail: rights@aip.org