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We tend to look for order in nature.
It’s an idea that pervades all of physics.
Disorder at high temperature gives way
to symmetry breaking and order at low
temperature. It’s an outlook that Lev
Landau introduced more than half a
century ago, and that several genera-
tions beautifully treated, to explain the
associated phase transitions. It seems to
make sense. But what can we say rigor-
ously about order and disorder? A re-
cent Reference Frame column by Jim
Langer on the mysterious glass transi-
tion (PHYSICS TODAY, February 2007,
page 8) points out that in most cases a
glass is not a thermodynamic equilib-
rium state. But can it ever be? Can there
be an “ideal” glass, a random state that
is thermodynamically stable? We be-
lieve that simple equilibrium systems
have to order. It’s our prejudice, or as
Daniel Fisher puts it, “It’s a religion.”

A similar and related problem is
whether optimization leads to order in
other problems such as the densest
packing of identical objects. Every gro-
cer for the past many millennia has
known that the densest packing of or-
anges is the ordered array that we now
know as a face-centered cubic lattice.
FCC has recently been proven to be the
densest packing,1 a result that “many
mathematicians believed and all physi-
cists knew” since the 1611 Kepler con-
jecture.2 There are few such nice rigor-
ous proofs that ordered states are
optimal.

Packing problems are among the
most ancient, even predating the gro-
cer’s problem. When agriculture first
developed in Mesopotamia, there were
no scales. Grain was sold by volume—
by the basket. You wouldn’t arrange the
grains in a lattice, you would pour the
grain in randomly. It was even a disad-
vantage to have the densest packing.
Pack less densely, sell more baskets, get
more barter, buy your neighbor’s farm,
wife, . . . .

I have innocently slipped in the
words “random” and “ordered.” Al-
though these are simple intuitive con-

cepts, I don’t know how to define either
one of them. Ordered is a bit easier than
random. Certainly, we can identify a
system with broken symmetry as more
ordered; a ferromagnet with its spins
aligned is more ordered than an
isotropic random set of spins. But the
string of letters “devine apathia devine
athambia devine aphasia loves us
dearly with some exceptions for rea-
sons unknown” is also ordered; its cor-
relations are quickly interpreted by 
our brains and by the brain of Samuel
Beckett, who ordered them for that pur-
pose. Clearly, things can be ordered in
innumerable ways. Random is intu-
itively opposite to ordered; it implies
uncorrelated. With some care we can
generate a random number sequence.
But a random packing already has cor-
relations because the particles don’t in-
terpenetrate. So what level of correla-
tions do we accept and still call the
system random?

Random packing
The fact that random packing is ill de-
fined3 hasn’t prevented people from
studying it. Suppose random just
means the result of pouring grain or
sand or spheres into a jar. Fifteen years
ago Sid Nagel and Heinrich Jaeger did
that experiment at the University of
Chicago.4 They found that when you
pour the sand into a cylinder, it fills to
a certain level that corresponds to about
58% solids. If you tap the cylinder, you
find that the level falls—the packing be-
comes denser. If you tap a lot (they did
about 106 taps), the volume fraction
(amount of solids) increases to about
64%. The fact that tapping leads to com-
paction, that the final density depends
on the protocol, was known and recog-
nized in the ancient world. In J. D.
Bernal’s Bakerian lecture on random
packing, he says,5 “In closing we must
not forget the commentary on Random
Packing which Saint Luke attributes to
Jesus, ‘Give and it shall be given unto
you; good measure, pressed down, and
shaken together, and running over,
shall men give into your bosom. For

with the same measure that ye mote
withal shall be measured to you again’
(Luke 6:38).” In other words, you’d bet-
ter give your grain its 106 taps before
you sell it or you’re cheating.

Despite random packing being ill
defined, a number of different protocols
will give an interesting jammed state at
a volume fraction of 63.6%. The answer
seems better defined than the question. 

It’s a little strange that you get a ran-
dom state when you throw a bunch of
spheres together and shake the con-
tainer. It won’t happen in one or two di-
mensions. Compress a line of spheres
and you get a periodic array that com-
pletely fills the line. A layer of pennies
that is compressed will easily give a
hexagonal lattice, which is the densest
circle packing. The layer fills π/2√3,
which is 91% of the area. But in three di-
mensions, a sack of marbles has a vastly
different structure from FCC. The mar-
bles’ random arrangement is a peculiar
property of the dimension we live in,
maybe related to the difference between
local packing and global packing. Add
pennies together one at a time (with no
rearrangements) to form a tight cluster
and you have part of a hexagonal lattice
at each step. Add spheres together and
as you do, first you get a pair, then a tri-
angle, then a tetrahedron, and when
you add the sixth particle, you get a
configuration that is inconsistent with a
globally dense packing.

What did the previous discussion
have to do with physics and order? The
argument, which may have originated
with Johannes van der Waals, has to do
with the entropy and free volume near
a jammed packing. Thermodynamics
tells us we’re supposed to maximize the
entropy. For an ideal gas of N particles
in volume V, the entropy, S, per particle
is S/N = kBln(V) where kB is Boltzmann’s
constant and the pressure P = NkBT/V.
If each particle takes up a volume b
then the “free volume” is V − Nb =
V(1 − φ/φc), where φ is the volume frac-
tion and φc is the highest packing frac-
tion for the given constraints, φc = 0.64
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for random packing, and φc = 0.74 for
FCC packing. Near φc, S/N ∝ kBln[V(1 −
φ/φc)] and P ∝ NkBT/V(1 − φ/φc). If you
randomly fill a box with spheres to 0.64,
the particles are jammed—there is no
free volume. Put the same spheres in
the same box and arrange them in cells
on an FCC lattice, and they could fill
space to 0.74; so in these cells at 0.64 fill-
ing, they are not touching, and the free
volume is bigger than zero. The ordered
FCC state is stable because it has higher
free volume and higher entropy than the
disordered state, as unintuitive as that
may be.

A good deal of theoretical and ex-
perimental evidence suggests that this
hard-sphere, entropy-driven transition
is responsible for the liquid–solid tran-
sition in noble gases and probably for
much more, generally.6 But the real les-
son is that for hard particles (with no in-
teractions), the densest packed structure is
the thermodynamically stable phase at high
density. If we could find a hard object
that packed denser randomly than in a
crystal, it would be an ideal glass.

For spheres arranged in three di-
mensions, crystal packing is denser
than random packing, and order is ther-
modynamically stable over disorder.
What about other shapes and other di-
mensions? An ellipsoid is just a
squashed sphere, a shortening of one or
two axes. According to the mathematics
literature, for small deviations from a
sphere the densest packing is a
squashed FCC lattice with the same
packing fraction of about 74%. Alek-
sander Donev, Frank Stillinger, Sal
Torquato, and I looked at the packing of
ellipsoids, most infamously with a se-
ries of experiments on M&Ms candies,
and discovered that they pack ran-
domly7 at about 70%—more densely
than random spheres, which only pack
at about 64%. How dense can we get
with ellipsoids?

In a simulation we found that for
principal axes 1.25:1:0.8, using 32 ellip-
soids, they packed randomly better than
74%. A random packing denser than a
crystal packing? How could that be? It
would be a stable thermodynamic glass.
Doesn’t our result violate some law of
physics, of mathematics, of nature?

What is known about whether sys-
tems have to order? Well, the answer is
that except for spheres in one, two, and
three dimensions where the crystal
packing has been proven to be densest,
not much is known. It’s actually one of
the 10 (later 23) “unsolved problems” in
mathematics that David Hilbert pre-
sented in Paris in 1900. Part of the 18th
problem, “Building up space from Con-

gruent Polyhedra,” was to find and enu-
merate the different structures and sym-
metries of the densest packings in Eu-
clidean (and hyperbolic) d-dimensional
space.8 It remains unsolved.

Packing in higher dimensions
What about higher dimensions? We al-
ready imagine four dimensions from
relativity, and mathematicians have no
problem adding more orthogonal axes
and asking how to generalize the
sphere packing problem. It’s actually
important in optimizing data storage
and transmission.2 Although our intu-
ition is probably less reliable in higher
dimensions, we might expect that order
would lead to the densest packing in
higher dimensions as well. But each di-
mension seems to have its own peculi-
arities. Although there are some rigor-
ous upper and lower bounds, there are
few proofs for the actual densest pack-
ing. A special case is the remarkable
Leech lattice in 24 dimensions, which 
is proven not only to be the densest
lattice,2,3 but if a non-lattice is denser, it
will be by less than 2 × 10−30.

Quite recently, Torquato and Stil-
linger, who have contributed much to
the sphere and ellipsoid packing prob-
lems, have made some inroads into
packing in high dimensions. In 1905
Hermann Minkowski set a lower bound
of 2/2d for packing in high d dimensions.
Torquato and Stillinger were able to
show that randomly adding particles
until no more could be added without
overlap gave 2d/2d, a higher density than
Minkowski got. This “random sequen-
tial addition” is known as the parking
problem in 1D—uniform length cars
randomly pull up to an unmarked curve
and park until there is no longer room
for an additional car to park. Random
sequential addition in 1D has a mean
field solution of 2/3, an exact solution of
0.747. . ., and yields a very low density
compared to a jammed configuration in
any dimension.

Using denser random structures,
Torquato and Stillinger were able to
show that in high dimensions they
could get an exponential improvement,
1/2(.778. . .)d, over Minkowski’s result. The
upper bound is 1/2(.5990)d, which is still
above the random value, so nothing is
wrong. We know that in up to three di-
mensions lattice packing is densest. So
how high do you have to go for random
to be densest? Although the densest
packing for d dimensions is unproven,
above d = 3 the densest crystal yet
found is denser than the densest ran-
dom packing for d < 57. For d = 56 the
crystal is denser than random by a fac-

tor of 2, but at d = 60 the best packing
yet found is higher for random than for
crystal by a factor of 5. Of course, these
are just the best answers to date, and
they are still much less than the upper
bound. Nonetheless, the results suggest
that random packing may be denser in
high dimensions and illustrate our lack
of evidence that order should always
triumph.

The Landau paradigm may also be
faltering in the area of strongly correlated
electrons.9 In that case it is less a question
of whether the ground state is ordered or
disordered. Instead, the question is
whether the traditional Landau picture
with a broken symmetry order parame-
ter can handle the phenomena associated
with quantum phase transitions. The
phases and transitions are more directly
the results of the topological defects of
the different phases than the undiscov-
ered nature of the order.

It seems that there is not (yet) a law in
physics or math that requires ground
states, condensed phases, or the densest
packing to be ordered. Finding a system
that violates our basic intuition would
lead to new insights. It would also help
if we could define “order” and especially
“random.” Then we could start working
on the problem from the other side.

What about our 1.25:1:0.8 ellipsoids
that pack randomly denser than the best
crystal packing that the mathematicians
had found? Old habits die hard. Not be-
lieving that random is denser than or-
dered, we searched for and found a
crystalline packing of the ellipsoids that
was a fraction of a percent denser than
our random packing7 (and led to ellip-
soid crystal packing up to 77%). So we
still don’t have an object that packs bet-
ter randomly than as a crystal. But we’re
still looking. Maybe tetrahedra?

Thanks to Sal Torquato, Tom Lubensky,
Daniel Fisher, David Pine, Charles Radin,
Leo Kadanoff, and Jim Langer for helpful
comments.
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