Apparently, Bose did not make progress with either of the two questions, nor is there any evidence that Einstein considered them further. Bose had formulated an interaction between radiation and matter,1 which Einstein criticized because, according to Wali's article, "the coefficient of absorption is independent of the density of the radiation." It can be shown, without the need to appeal to the "new quantum theory," that it is Einstein's 1916 quantum theory for the interaction between matter and radiation² that leads directly to Bose statistics.3 Surprisingly, this deduction escaped the attention of Einstein, who otherwise would have discovered Bose statistics.

References

- 1. S. N. Bose, Z. Phys. 27, 383 (1924).
- A. Einstein, in Sources of Quantum Mechanics, B. L. van der Waerden, ed., North-Holland, Amsterdam (1967), p. 63.
- 3. M. Nauenberg, Am. J. Phys. 72, 313 (2004).

Michael Nauenberg (michael@mike.ucsc.edu) University of California, Santa Cruz

Of politics and preparation in Cuban physics

What has happened to the community of physicists in Cuba (PHYSICS TODAY, September 2006, page 42) is a good example of how scientific research and the lives of scientists can be manipulated by authoritarian and inept politicians.

The article shows very clearly how Ernesto "Che" Guevara, Fidel Castro, and a few others without any scientific background have determined the direction of physics research in the country. After so many years of arbitrary political decisions, as the article says, "an estimated 200 physicists left the country, and an undetermined number sought better economic conditions in fields other than science."

The same politicians have dictated the economic, financial, industrial, journalistic, artistic, and literary lives of Cubans. As a consequence, censorship, prohibitions, and repression have dominated Cuban political, economic, and cultural life during the past 47 years. It's difficult and demoralizing to live in a country where all people, scientists included, are under the control of a total-itarian regime.

Carlos Delgado

(carlos.delgado@ccsn.edu) Community College of Southern Nevada Las Vegas

Congratulations to Physics Today on the very informative article about advanced physics education in Cuba during the late 20th century, from this former student of Ciencias Físico Químicas (chemical physics) at the University of Havana. The approximately two-century-old tradition of strong public science education has led to the success of their graduates at home and abroad. My contemporaries (1946-51) received instruction in various disciplines that physics depends on, particularly mathematics and chemistry. Many of us were prepared to obtain higher degrees abroad—for example, at the University of Minnesota and the University of California, Berkeley. The excellent, devoted professionals mentioned in the article gave us the foundations—such as the Gauss, Green, and Stokes theorems-that we would later use for solving real physics problems.

We were also exposed to lectures on street-wise topics. One noteworthy example was a presentation as the first lecture of organic chemistry. The instructor showed students how to build a firebomb using the important national product, sugar, plus a still readily available liquid that could be carried in a small test tube in a coat pocket. The purpose was not to train terrorists but to inform the students of possible threats in the world. This type of education is still needed everywhere.

I have made my academic career in the US because of family matters. But I received the important undergraduate foundations of my education in Cuba, from excellent teachers, at public institutions.

> Juana V. Acrivos (jacrivos@athens.sjsu.edu) San José State University San José, California

Rodríguez, Fajer, and Baracca **reply:** It is a pleasure to see that scientists continuing their academic careers abroad are grateful for the high-quality education they received at Cuban public universities. In the times Juana Acrivos remembers, the number of university students was very small and a degree in physics was not yet offered, but there were two mixed programs: physico-chemical and physicomathematical sciences. Extensive access to universities, degree programs in physics, postgraduate studies, research, connections to industry and the health system, and so forth came later, with the revolutionary transformations of the 1960s. The selection of research directions was, and still is, a highly participative process involving physicists, students, and colleagues from many different countries. The vision and stimulus of some government leaders also played a very important and encouraging role.

At the beginning of the 1990s, changes in the international arena interrupted a 30-year process of growth and development of Cuban physics, which has returned only in recent years. Looking for better economic conditions, some physicists left the field or the country: Cuba experienced the so-called brain drain that affected so many countries. It had been almost nonexistent in Cuba until the 1990s.

We hope our article has provided a vision of Cuban reality, an alternative to reiterated diatribes and disinformation. We invite bona fide scientists to engage in free academic exchange based on mutual respect, understanding, and scientific interest.

Carlos Rodríguez

(dir@imre.oc.uh.cu) Institute of Materials and Reagents Havana, Cuba

Víctor Fajer

(vfajer@ceaden.edu.cu) Center of Technological Applications and Nuclear Development Havana, Cuba

Angelo Baracca (baracca@fi.infn.it) University of Florence Florence, Italy

Bicycle stability in no-hands riding

With great pleasure, I reread the article "The Stability of the Bicycle" (PHYSICS TODAY, September 2006, page 51, reprinted from 1970). As an enthusiast who has bicycled daily for approximately 40 years, I was in resonance with much of the article, especially the discussion of no-hands riding, which I recklessly persist in doing. I was in the middle of my undergraduate career when this article first appeared, and my overall understanding of it at the time was feeble, but this article is one of the few in PHYSICS TODAY that I remember clearly, even after 36 years.

Sid Redner (redner@bu.edu) Boston University Boston, Massachusetts

The reprint of David E. H. Jones's article made me wonder how one can understand a bicycle's stability without

considering the effect of the forward velocity. Any bicyclist knows that the smaller the velocity, the more unstable it becomes. The novice cyclist learns very quickly to keep the bicycle upright by steering in the direction of the lean to restore the balance. The result of this action is to convert the unbalanced force threatening to topple the bicycle into the centripetal force acting on a mass moving in a circular path. By equating torques, we find that R = $v^2/g \sin(A)$, where R is the radius of the path, v the velocity of the bicycle, g the acceleration due to gravity, and A the angle of lean. For a lean of 0.1 radians and a velocity of 4 m/s, a radius of 16 m will stabilize the lean. A smaller radius will reduce the lean. That this stratagem does not depend in any major way on the details of the bicycle's design explains why many supposedly unrideable bicycles could be ridden after all. It also accounts for the greatly reduced stability at low velocity.

More interesting is the bicycle's behavior sans rider or when the rider has no hands on the handle bars. Consider pushing a bicycle with one hand on the seat. Experience tells you that you can steer the bicycle by making it lean in the desired direction. The front wheel will pivot in that direction. A little thought will show that when the bicycle is made to lean, the force exerted by the ground on the front wheel no longer passes through the steering axis. That exerts a torque on the steering mechanism and turns the handle bars. Now the details of the design become significant. The torque is in the desired direction provided the front wheel contacts the ground behind the point of intersection of the extended steering axis and the ground, typically a distance of around 5 cm. For small angles of lean, the torque is proportional to the sine of that angle. A bicycle ridden "no-hands" is steered by shifting one's weight to make it lean.

The riderless bicycle remains upright by the same sequence of events. If it starts to lean, the front wheel automatically steers in the direction of the lean. If the velocity is sufficiently large, the centrifugal force will reduce the lean, and the caster action will straighten out the steering. The resulting negative feedback keeps the bicycle upright.

Gunther K. Wertheim

(gkwer@verizon.net) Woodland Consulting Morristown, New Jersey

Stellar fusion doesn't stop at helium

In the feature article "Ultracompact Binary Stars" by Gijs Nelemans (PHYSICS TODAY, July 2006, page 26), box 1 all but declares that stars less than 8 solar masses fuse hydrogen into helium, and that's it. Not so: Stars with more than about half a solar mass will go on to fuse helium into carbon and oxygen as well. In fact, the accepted picture of an entire class of stars, RR Lyrae variables, consists of stars less massive than the Sun that burn helium in their cores and hydrogen in a shell.

Plenty of readable descriptions of this are available, from basic but clear,¹ to intermediate,² to more advanced.³

References

- 1. V. Trimble, *Visit to a Small Universe*, American Institute of Physics, New York (1992), p. 121.
- W. K. Rose, Advanced Stellar Astrophysics, Cambridge U. Press, New York (1998), p. 19; M. Harwit, Astrophysical Concepts, 2nd ed., Springer, New York (1988), p. 15.
- R. Kippenhahn, A. Weigert, Stellar Structure and Evolution, Springer, New York (1990), p. 308.

Mason S. Osborne

(sosborne@math.washington.edu) University of Washington Seattle

Nelemans replies: Thanks to Mason Osborne for the clarification. Indeed, stars that are initially lighter than 8 solar masses also fuse helium into carbon and oxygen and end up with a degenerate carbon-oxygen core. Stars with initial masses of less than about 2 solar masses first develop a degenerate helium core, which in the helium flash is turned into a helium-burning core. Apart from the RR Lyrae stars, several other types, such as subdwarf B stars and horizontalbranch stars in globular clusters, are in the helium-burning-core stage (references in the original article and in Osborne's letter). The point of my simplification in the box text was to distinguish between stars that develop a degenerate core to withstand gravity and more massive stars that do not form such a core. The less massive stars form white dwarfs after losing their hydrogen mantle, and the heavier ones ultimately become neutron stars or black holes.

Gijs Nelemans

(nelemans@astro.ru.nl) Radboud University Nijmegen Nijmegen, the Netherlands

TV shows praised for teaching physics

The wonderful item "TV Series Gives Teens Hands-on Experience with Machines" (PHYSICS TODAY, October 2006, page 26) encourages teens to find the satisfaction in making something of their own and seeing it work. Such workingmodel demonstrations should be encouraged. Recently I saw a young female student from Karnatak University (Karnatak, India) make a working model of a machine to fill overhead water tanks in homes; it had an automatic on-off switch. Such TV shows should be videotaped and shown in every classroom. In fact, video clips of working models would have been a nice and encouraging accompaniment to the article online.

> Maltesh Motebennur (mmaltesh@rediffmail.com) Rajiv Gandhi University Itanagar, India

I was happy to read about the upcoming TV show Design Squad and look forward to watching it. I was an enthusiastic viewer of the now cancelled Junkyard Wars on the TLC cable channel. The show at least initially did a good job of teaching "stealth science" in a way that was both exciting and educational. I saw it as a way to get young people interested in sciences by active demonstration. Unfortunately, Junkyard Wars changed its tone to compete with "reality" shows, which turned me off. The UK version, Scrapheap Challenge, is still in production, but apparently no American market is interested in airing it.

Robert Oppenheimer (oppie@cloud9.net) White Plains, New York ■

Rights & Permissions

You may make single copies of articles or departments for private use or for research. Authorization does not extend to systematic or multiple reproduction, to copying for promotional purposes, to electronic storage or distribution (including on the Web), or to republication in any form. In all such cases, you must obtain specific, written permission from the American Institute of Physics.

Contact the

AIP Rights and Permissions Office, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502 Fax: 516-575-2450 Telephone: 516-576-2268 E-mail: rights@aip.org