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A quantum computer is a digital
computer capable of exploiting quan-
tum coherence among the physical two-
state systems that store the binary arith-
metic information.

To factor an integer is to find its
(unique) expression as a product of
prime numbers.

The most impressive, most impor-
tant, and best-known thing a quantum
computer can do is to factor with spec-
tacular efficiency the product of two
enormous prime numbers. But what on
earth can quantum mechanics have to do
with factoring?

This question bothered me for four
years, from the time I heard about the
discovery that a quantum computer
was spectacularly good at factoring
until I finally took the trouble to find
out how it was done. The answer, you
will be relieved—but, if you’re like me,
also a little disappointed—to learn, is
that quantum mechanics has nothing at
all directly to do with factoring. But it
does have a lot to do with waves. Many
important waves are periodic, so it is
not very surprising that quantum
mechanics might be useful in effi-
ciently revealing features associated
with periodicity.

Quantum mechanics is connected to
factoring through periodicity. It turns
out, for purely arithmetic reasons hav-
ing nothing to do with quantum me-
chanics, that if we have an efficient way
to find the period of a periodic function,
then, as we shall see below, we can eas-
ily factor the product of two enormous
prime numbers. And a quantum com-
puter provides an extremely efficient
way to find periods.

All of the above is of considerable
practical importance, because the great
difficulty in factoring such a product—
where the two enormous prime num-
bers are typically each several hundred
digits long—is the basis for the security
of the most widely used encryption
scheme (called RSA1 encryption) for
protecting private information sent
over the internet. In 1994 Peter Shor dis-

covered2 that a quantum computer
would be super efficient at period find-
ing and thereby pose a potential threat
to innumerable secrets. Whence the ex-
plosion of interest in developing quan-
tum computation. The threat is only po-
tential because no quantum computer
capable of anything like serious period
finding currently exists.

I suspect the emphasis has been put
on factoring rather than period finding
because factoring is more famously as-
sociated with RSA code breaking, al-
though, as it happens, period finding
can be used directly to crack the RSA
code, without any need for a detour into
factoring. Factoring is also a mathemat-
ical concept more familiar to the general
public than period finding.

The focus on factoring has led to
some spectacular misrepresentations of
Shor’s algorithm in what Einstein
called “the secular press.” For example,
the New York Times science writer
George Johnson says in his book on
quantum computation, A Shortcut
Through Time (Alfred A. Knopf, 2003),
that when the algorithm has done its
job, “the solutions—the factors of the
number being analyzed—will all be in
superposition.” Elsewhere he says that
a quantum computer can “try out all
the possible factors simultaneously, in
superposition, then collapse to reveal
the answer.” Neither of these state-
ments bears the slightest resemblance
to what the algorithm actually does.

A lesson in modular arithmetic
Such misinformation can give rise to a
lot of confusion. The first step to en-
lightenment is to understand the purely
arithmetic connection between factoring
and period finding. Then you can forget
all about factoring. The link is surpris-
ingly simple, if you’re acquainted with
modular arithmetic and are willing to
accept, as an empirical fact, that a proce-
dure that might give you the factors, if re-
peated not terribly many times, almost
certainly will give them.

In modular arithmetic, two integers
are said to be equal (or “congruent”)

modulo a particular integer N (written
≡) if they differ by a multiple of N.
Modulo N the infinite set of integers
wraps around a circle into the finite set
0, 1, 2, 3, . . . , N − 1. Here, for example,
are the powers of 3 modulo 5: 32 ≡ 4, be-
cause 32 = 9 = 5 + 4; 33 ≡ 2, because
33 = 27 = 5 × 5 + 2; 34 ≡ 1, because
34 = 81 = 16 × 5 + 1; and 35 ≡ 3, be-
cause 35 = 243 = 48 × 5 + 3. After that
it repeats: 36 ≡ 32, 37 ≡ 33, 38 ≡ 34, and so
on; 3x modulo 5 is a periodic function of
x with period 4. Starting at x = 1, it pro-
duces the sequence 342134213421 . . . .
The number 4 has a different period
modulo 5. Since 42 = 16 = 3 × 5 + 1,
the sequence produced by 4 is
41414141 . . . . The period is 2.

Why should something as simple as
modular arithmetic enable you to do
something as hard as factoring the
product of two enormous prime num-
bers? By itself, it can’t. But if you have a
really good period-finding machine—
and Shor’s discovery was that a quan-
tum computer is just such an engine—
then there is an easy way to learn the
two primes using modular arithmetic.
Here is what you do:

Pick an integer a at random. With
overwhelming probability, a will not be
a multiple of either of those two enor-
mous primes. That being so, it is easy to
show that some power of a must be
equal to 1 modulo N. For modulo N
there are only N distinct numbers,
0, 1, 2, . . . , N − 1. So if you imagine a
list of N + 1 different modulo-N powers
of a, the list has to contain at least one pair 
of distinct powers of a, with ay ≡ ax, 
and y > x. This means that ay − ax =
ax(ay −x − 1) is a multiple of N.

Since a does not contain either prime
factor of N, neither does ax. So if the
product of ax with ay − x − 1 is divisible
by N, then ay − x − 1 must all by itself be
a multiple of N: ay − x ≡ 1.

But if some nonzero power of a is
equal to 1 modulo N, then there must be
a smallest such power. If r is the small-
est positive integer satisfying ar ≡ 1,
then the function f(x) = ax modulo N is
periodic with period r. So if we have a
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good period-finding machine—our
quantum computer—then we can find
r for any a. And with a little bit of luck
(we’ll return in a moment to just how
much luck we need), knowing the pe-
riod r actually enables us to factor N
easily. We need two pieces of luck.

First, suppose we are lucky enough
to have picked a random a whose
period r is even: r = 2m. If b ≡ am, then
(b − 1)(b + 1) = b2 − 1 ≡ ar − 1, so the
product (b − 1)(b + 1) must be a multi-
ple of N. But b − 1 ≡ am − 1 cannot by
itself be a multiple of N, since m is
smaller than r, and the period r is the
smallest power of a with ar − 1 a multi-
ple of N.

Second, suppose we are lucky
enough to have picked an a for which
b + 1 is also not a multiple of N. Then
neither b − 1 nor b + 1 is a multiple of
N, although their product is. Since N is
the product of two prime numbers, 
b − 1 must be a multiple of one of the
prime factors of N, and b + 1 a multiple
of the other. One factor of N is then the
greatest common divisor of b − 1 and
N, while the other factor is the greatest
common divisor of b + 1 and N.

Now we are finished. Given any two
integers, there is a famous and child-
ishly simple way to find their greatest
common divisor, which has been
known at least since Euclid. It can be
carried out by anybody who can do
long division, a skill, to be sure, that I
recently learned from the New York
Times is becoming increasingly rare.
With the Euclidean algorithm, an effi-
cient period-finding machine, and the
two little bits of luck, we can factor the
product of two large prime numbers.

How lucky must we be? Here, and
only here, I will hide a rather elaborate
argument behind the irritating phrase
“it can be shown.” It can be shown that
if a is picked at random, then the prob-
ability of its modulo-N period r being
even and ar/2 + 1 not being divisible by
N—the two pieces of good fortune we
require—is at least 50%. So if we have a
good period-finding machine, it need
not work on ax modulo N for many dif-
ferent random integers a to enable us to
find the factors of N. If we pick 20 dif-
ferent random a, then the odds against
failure are more than a million to one.

Showing what can be shown is the
only hard part of establishing the con-
nection between period finding and
factoring. But if you are willing to 
accept the happy fact that you will
surely succeed in under 20 attempts
(and you surely will), then you now un-
derstand on a practical level how to use
a wonderful quantum period-finding

machine to factor the product of two
large primes.

Why period finding is hard
But before we can get to how the quan-
tum period-finding machine does its
magic, another question comes irritat-
ingly, but irresistibly, to mind. What’s so
hard about finding the period of a peri-
odic function? If I produce a graph of
sin(kx), who needs a quantum com-
puter to figure out the distance d = 2π/k
over which it starts repeating itself?
Aren’t repeating patterns easily recog-
nized? Indeed, isn’t the recognition of
their periodicity the basis of the pleas-
ure we take in them?

Yes indeed, provided the set of num-
bers whose repetition constitutes the
periodic sequence has an easily recog-
nizable structure. But the function
whose period you need to learn, if you
want to factor the enormous number N,
is ax modulo N. The sequence of integers
this specimen churns out as x pro-
gresses from 1 up to the (in general
huge) period r is virtually indistin-
guishable from random noise. You can’t
look for a pattern that repeats itself, be-
cause there is no pattern. Nothing you
can discern from the sequence gives the
slightest hint of when it is likely to start
over again. Periodically repeating noise
looks locally like—in fact locally is—
just noise.

One thing that does distinguish the
set of numbers that repeats from ran-
dom noise is that within a period r, no
value of ax modulo N can appear twice.
(For r is the smallest value for which
ax ≡ ax + r.) So one sure way to find the
period is just to evaluate ax modulo N
for successive values of x until you fi-
nally reproduce the first evaluation.
The initial and final values of x are then
guaranteed to differ by r.

The problem is that for crypto-
graphic purposes, N is typically a num-
ber with 400 or more digits, which typ-
ically sets the scale for the number of
digits in the period r. So this brute-force
approach requires an impossibly large
number of evaluations. A more subtle
strategy is required. The quantum com-
putational route to period finding has
some exquisite subtleties. But that must
be the subject of a future column.
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