
The turbulent flow of ordinary fluids is so common that
we hardly stop to wonder at it. Yet it is a remarkable and beau-
tiful phenomenon, portrayed in insightful drawings by
Leonardo da Vinci such as those shown in figure 1. Turbulence
is of enormous importance in fields ranging from meteorology
to aerospace engineering and stellar evolution. Understanding
turbulence presents us with some of the most challenging prob-
lems in classical nonlinear dynamics (see figure 2).

Although physicists, including some of the most distin-
guished, have occasionally been drawn into the study of turbu-
lence, it is now for the most part the province of applied math-
ematicians and engineers. Perhaps that’s because physicists are
more interested in quantum phenomena. Which raises the ques-
tion of whether turbulent flow is always a purely classical phe-
nomenon. Can it ever be influenced by quantum effects? Of
course, the flow of a superfluid is a quantum phenomenon. So
we are led to ask whether turbulence is possible in a superfluid.
And if it is possible, how does the resulting interplay of quan-
tum and classical fluid mechanics actually work out?

The idea that turbulence is possible in a superfluid was
first mentioned in 1955 by Richard Feynman as a theoretical
possibility.1 At about the same time, Henry Hall and one of
us (Vinen) were finding experimentally that certain types of
superflow do indeed exhibit turbulent characteristics.2 There
was some study of these special types of superflow in the
years that followed. But strangely, there was for many years
hardly any study of what one might call the quantum ana-
logues of well-known classical forms of turbulence. In the
past 10 years, however, the situation has changed, and re-
searchers are at last starting to ask how quantum effects can,
in fact, influence classical turbulence.

Superfluidity and quantum turbulence
At first what is now called quantum turbulence was studied
only in superfluid helium-4, which exists at temperatures
below 2.2 K. The name was introduced by one of us (Don-
nelly) and defended in a 1986 review article.3 More recently,
study of quantum turbulence has been extended to the su-
perfluid phases of the rare isotope 3He, especially to its low-
temperature phase, 3He-B. That relatively simple phase4 oc-
curs at temperatures below 2 mK. In the near future, we can
expect to see a further extension of quantum turbulence to
Bose-condensed gases at microkelvin temperatures.

In the context of quantum turbulence, the important
properties of all these superfluids can be summarized as fol-
lows.5 They exhibit two-fluid behavior: a viscous normal
fluid, formed from thermal excitations, coexisting with an in-

viscid superfluid. The fraction of normal fluid falls from
unity to zero as the temperature falls from the superfluid
transition to absolute zero. And the two components have
separate velocity fields, vn and vs.

Superfluid behavior has its origin in the formation of 
a coherent particle field—the condensate wavefunction—
associated with Bose condensation of 4He atoms or Bardeen-
Cooper-Schrieffer condensation of Cooper pairs of 3He atoms.
Flow of the superfluid component is associated with gradients
in the phase of the condensate wavefunction. As a result, the
superfluid flow is subject to severe quantum restrictions, es-
sentially the quantization of angular momentum. Locally the
flow must be irrotational; that is curl vs must vanish. And 
irrotational flow around an annulus is restricted in such a way
that the circulation, defined as the line integral � vs ⋅ dr of that
annular flow, is quantized in units of 2π�/m, where m is the
mass of either a 4He atom or a Cooper pair of 3He atoms.

What is effectively an annulus can be created in the bulk
of the fluid by suppressing superfluidity along a thin cylin-
drical volume, or core, extending along its length to the
boundaries of the fluid. And a single quantum of circulation,
κ = 2π�/m, around this cylinder leads to the quantized vor-
tex line shown in figure 3a. The suppression of superfluidity
in the core of the vortex is associated with destruction of the
condensate at a high velocity. It is energetically favorable to
lose superfluidity when the kinetic energy of the flowing su-
perfluid becomes too large. The resulting core radius is
roughly 0.1 nm for 4He, and 80 nm for 3He-B at low pressure.
For the most part, quantized vortex lines appear to move in
accordance with the laws of classical fluid mechanics.

Two-fluid behavior leads to the phenomenon of second
sound, which is a lightly damped temperature wave in
which the two fluids move in opposite phase. Second sound
has proved to be an important tool in the study of quantum
turbulence.2

Turbulence, by its nature, involves the random formation
of eddies with rotational motion (see figure 2). Because such
rotational motion in the superfluid component is made possi-
ble only by the presence of quantized vortex lines, superfluid
turbulence is restricted to some more or less random tangle of
vortex lines (see figures 3b–d). Therefore one might expect
quantum turbulence to be very different from its classical
counterpart. We shall see that this is not necessarily the case.

Experimental challenges
The experimental study of quantum turbulence involves pe-
culiar difficulties. Turbulence in a classical fluid such as water
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or air can be seen with the naked eye, espe-
cially if the flow is seeded with small tracer
particles. But suitable particles with which to
seed a superflow must be more or less neu-
trally buoyant. That’s difficult for a low-
density fluid such as liquid helium. Further-
more, the particles must not aggregate, and they
must be small enough to exhibit the micron
scale on which quantum turbulence can occur.

More seriously, interpretation of the
movement of tracer particles in a two-fluid
system is not straightforward. Are they track-
ing the motion of the normal fluid or the su-
perfluid, or are they trapped on the quantized
vortex lines? There has recently been some ex-
perimental6 and theoretical7 progress in the
application of tracer particles in superfluid
4He. But there’s a long way to go before the
technique can provide unambiguous infor-
mation. The velocity with which a tracer par-
ticle moves is complicated and hard to un-
derstand.

Alternatively, one can measure pressure
gradients associated with turbulent flow in a
tube and the forces on obstacles past which
there is turbulent superflow. In the presence
of vortex lines, there is a frictional interaction,
called mutual friction, between the normal
and superfluid components. That interaction
arises from the scattering of thermal excita-
tions by the vortex lines. Measurement of mu-
tual friction through its damping effect on sec-
ond sound has been used extensively to
obtain information about the density of vor-
tex lines in different flows. The technique is
analogous to measuring the mean square vor-
ticity in classical flows. Vorticity is defined as
curl v.

Another potentially powerful technique
is based on a measurement of pressure fluc-
tuations within the superflow. Pressure fluc-
tuations can be related to fluctuations in tur-
bulent flow velocities. And with care, they can
be used to obtain turbulent energy spectra
E(k), where E(k)dk is the turbulent energy as-
sociated with wavenumbers in the range dk in a spatial
Fourier analysis of the velocity field. These spectra reveal
how the turbulent energy is distributed over different length
scales—that is, over different eddy sizes.

Great interest attaches to quantum turbulence at very
low temperatures (low compared with 1 K in 4He, and with
1 mK in 3He), where the density of normal fluid is very small.
At such temperatures, experimenters face the most serious
challenge. There, measurement of mutual friction in 4He be-
comes practically impossible. Even establishing interesting
types of flow is difficult because very little dissipation of en-
ergy is enough to raise the temperature out of the interesting
range. Indeed, the energy in the turbulent velocity field itself
can be comparable with the fluid’s thermal energy. Therefore,
an observation of the temperature rise can provide informa-
tion about the decay of turbulence.

For 3He-B at very low temperatures, the scattering of a
very small residual density of thermal quasiparticles by the
superfluid velocity field has a special character. It’s called An-
dreev scattering. George Pickett and colleagues at the Uni-
versity of Lancaster in England have shown how such scat-
tering yields interesting information about turbulent

intensities and their spatial extent.8 But there remain some
problems of detailed interpretation.

Quantum versus classical turbulence
Despite the experimental difficulties that stand in the way of
studying quantum turbulence, relatively simple experiments
have clarified much about its general nature. Rather than re-
view results from a wide range of experiments, we focus here
on two aspects of quantum turbulence that are especially in-
teresting: the similarities between quantum turbulence and
its classical counterparts, and the origin of dissipation in
quantum turbulence in the absence of viscosity in the super-
fluid component.

The first hint that classical and quantum turbulence may
not be so different came from experiments by Jean Maurer
and Patrick Tabeling9 in Paris in the late 1990s. Studying tur-
bulent flow generated by counterrotating disks, they ob-
tained the turbulent-energy spectrum from measurements of
the spectrum of pressure fluctuations in liquid 4He above 1 K.
The finite spatial resolution of their pressure transducer
meant that they could obtain the turbulent-energy spectrum
only for wavelengths greater than about 1 mm. The spectrum

Figure. 1. Leonardo da
Vinci’s Studies of Water
Passing Obstacles and
Falling, circa 1508–09.
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observed by Maurer and Tabeling proved to be exactly the
same at all temperatures from above the superfluid transition
down to 1.4 K, where the fraction of normal fluid is only 4%.

Furthermore the spectrum had, to a good approxima-
tion, the classical Kolmogorov form,

E(k) = Cε2/3/k5/3, (1)

where C is a constant of order unity and ε is an energy flux
per unit mass. The meaning of ε and the physics underlying
this spectrum can be summarized thus:10 In a typical turbu-
lent flow that’s at least approximately homogeneous, energy
is injected at large length scales (small k). In the
Maurer–Tabeling experiments, the rotating disks provide
this injection on the scale of the disk diameter. If the Reynolds
number Re for the flow on that large scale is much greater
than unity, then a nonlinear coupling due to the (v ⋅ ∇)v term
in the Navier–Stokes equation serves to transfer energy to
smaller eddies without loss. That probably happens in a so-
called Richardson cascade (see figure 4a), until the scale of
the turbulent flow is so small (Re of order unity) that the en-
ergy is finally dissipated by viscosity. (See the article by Gre-
gory Falkovich and Katepalli Sreenivasan in PHYSICS TODAY,
April 2006, page 43.)

The Kolmogorov spectrum describes the distribution of
energy over k scales in the so-called inertial range where the
dissipation is negligible, and the flux ε describes the steady-
state flow of energy in k space. At the lowest k, the flux must
equal the rate of energy injection, and at highest k, it must
equal the rate of energy dissipation (by viscosity, in the case
of a classical fluid).

At about the same time as the work of Maurer and Tabel-
ing, experiments at the University of Oregon11 were using
second sound to measure the density of vortex lines in the
wake of a steadily moving grid in superfluid 4He. Such a grid
is commonly used to generate homogeneous turbulence in a
classical fluid (see figure 2b). The largest resulting eddies

have a size comparable to the grid’s mesh spacing M.
The interpretation of the Oregon experiments is not

straightforward, but a plausible interpretation of the results
is as follows:10,11 Denote the typical spacing between adjacent
vortex lines in the turbulent superfluid by � (see figure 3b),
which is generally much smaller than M. On length scales
larger than �, the normal fluid and the superfluid behave 
like a single fluid with a Kolmogorov spectrum, as in the
Maurer–Tabeling experiments. Furthermore, dissipation is
occurring on scales no larger than �, at a rate given by

ε = ν′κ2/�4, (2)

where ν′ is an effective kinematic viscosity for the two-
component fluid. The quantity κ2/�4, which is proportional to
the square of the vortex-line density, is an effective mean-
square vorticity in the inviscid superfluid component.

Thus equation 2 is formally similar to one that describes
dissipation in classical homogeneous turbulence, but with ν′
replacing the classical kinematic viscosity, which is just vis-
cosity over density. This description of the Oregon results
continues to hold down to the lowest temperatures investi-
gated, about 1.1 K, at which the proportion of normal fluid
is less than 2%.

The recognition that superfluid He can exhibit turbu-
lence in which it seems to behave like a single classical fluid
has generated much debate. A widely held view is that, on
scales significantly greater than �, the superfluid component
itself behaves like a classical inviscid fluid.10 In other words,
eddy motion on a scale that encompasses many vortex lines
behaves in a quasiclassical way that mimics a classic inviscid
fluid rather well.

There are many ways to see that this interpretation of
the experiments is probably right. One simple argument is
that a system containing many quanta tends quite generally
to behave classically. The overall picture is then that, on a
large enough length scale, both the normal fluid and the
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Figure 2. Turbulent flow of
water (a) past a cylinder of di-
ameter d at two increasing val-
ues of the Reynolds number Re,
a dimensionless velocity param-
eter given here by ρvd/η, where
v is the free-stream velocity and
ρ and η are the water’s density
and viscosity. The eddies down-
stream of the obstacle become
smaller with increasing Re.
(Photos by S. Taneda.) 
(b) Turbulence initiated by 
flow through a grid. (Photo by
T. Corke and H. Nagib.)
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superfluid component behave
classically and exhibit Kol-
mogorov spectra. The mutual
friction associated with the vor-
tex lines couples the two fluids
together, so that there are not
only Kolmogorov spectra in
each fluid but indeed a single
classical velocity field with a
single Kolmogorov spectrum.

The idea that arrays of vor-
tex lines can mimic classical ro-
tational flow is visualized most
easily for a superfluid in equi-
librium in a rotating vessel. A
uniform array of vortex lines
leads to a superfluid velocity
field indistinguishable from
uniform rotation on any scale
that’s large compared with the
line spacing. More general
types of rotational flow are gen-
erated by patterns of partially
polarized vortex lines—that is,
lines with some degree of align-
ment in both direction and
sense of rotation.

On length scales not larger
than �, however, the motion of
the superfluid is totally non-
classical. What, then, deter-
mines the value of �? The Kol-
mogorov spectrum implies that
the fluid velocity v(r), on length
scale r, is given by 

v2(r) ∼ (εr)2/3. (3)

So velocity decreases with de-
creasing length scale at a rate
determined by the rate of en-
ergy input at the largest scale.
The vortex-line spacing � is, in
effect, the smallest possible
eddy size consistent with the
quantization of circulation.
Thus v(�) = κ/2π�. Therefore �
is determined by the equation

κ/2π� = (ε�)1/3, (4)

and is typically 10 microns when the large-scale flow veloc-
ity is of order 10 cm/s. This assumes that the Kolmogorov
spectrum extends down to scales of order �.

Much recent understanding of classical turbulence
comes from computer simulations. The equations that gov-
ern the motion of quantized vortices are known. They are es-
sentially classical, except for one feature that turns out to be
very important—namely the possibility that two vortex lines
can “reconnect” during a close encounter, as shown in fig-
ure 4b. Extensive computer simulations of the way in which
tangles of vortex lines evolve are now available from Makoto
Tsubota’s group at Osaka City University.12 The simulations
confirm that quasiclassical behavior can indeed occur.

The picture we have been presenting in connection with
the Maurer–Tabeling and Oregon experiments depends on
the normal fluid having little viscosity, so that turbulence is
possible in both fluids. That is, in fact, the case in 4He above

1 K; the viscosity of the normal fluid is so low that it has no
viscous dissipation on scales larger than �. But 3He-B is very
different. The normal fluid has such a high viscosity that it
cannot support turbulence on any laboratory scale. In prin-
ciple, turbulence is still possible in the superfluid component,
but it is inevitably damped by mutual friction between the
two fluids.

This damping has been the subject of extensive studies
by Matti Krusius and coworkers in Helsinki.4 They have
shown that, at temperatures not far below the superfluid
transition, the damping is so strong that it effectively inhibits
any turbulence in the superfluid component. At lower tem-
peratures, the mutual friction is smaller, and turbulence can
occur in the superfluid component, albeit with significant
extra damping. Detailed theoretical studies13 have explored
the conditions under which homogeneous turbulence could
be created in the superfluid component. But such turbulence
has not yet been studied experimentally. The theory predicts
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Figure 3. (a) A single quantized vortex line is like a miniature tornado with a core di-
ameter of order 1Å in superfluid helium-4. The line integral of superfluid velocity vs

around any closed loop enclosing the core is the quantum of circulation, namely
2πh/m, where m is the relevant elementary mass of the superfluid’s constituents. The cir-
culating velocity falls off as the reciprocal of the distance from the core. (b) A schematic
vortex tangle illustrating the average spacing � between vortex lines. (c) Computer simu-
lation of an evolving tangle of vortex lines in helium-4 at zero temperature.12 Note the
many sharp kinks, which have been produced by repeated vortex reconnections (see
figure 4b). (d) The simulated tangle in 4He at 1.6 K. At this higher temperature, there is
a significant fraction of normal fluid, so that the sharp kinks are smoothed out by mutual
friction between the superfluid and normal components. (Simulation figures courtesy of
Makoto Tsubota.)



that large eddies should be more strongly damped by mu-
tual friction than small ones. That’s an interesting contrast to
viscosity, which preferentially damps small eddies.

Dissipation in quantum turbulence
The Richardson cascade and the Kolmogorov energy spec-
trum depend on the existence of a dissipative process acting
at small length scales. In classical turbulence, viscosity pro-
vides that dissipation. In superfluid 4He at temperatures
above 1 K, where the fraction of normal component is sig-
nificant, the dissipation is provided by a combination of nor-
mal-fluid viscosity and mutual friction. On large length
scales, mutual friction has no effect because the velocity fields
of the two components are identical, with no relative motion.
But that happens only if the superfluid flow can be quasi-
classical. And on scales comparable with the vortex spacing,
such quasiclassical flow becomes impossible. Because the
two velocity fields must differ at such small scales, mutual
friction can operate.

Our discussion poses two important questions: Is quan-
tum turbulence in the superfluid component quasiclassical
even at temperatures so low that the normal fluid component
is completely absent? And if so, what would then provide the

necessary dissipation in the absence of
mutual friction? Experiments that satisfac-
torily address these questions are proving
difficult. All the experiments thus far in-
volve the generation of turbulence by
some sort of oscillating structure rather
than by a steadily moving grid. Such ex-
periments raise interesting questions, but
they cannot generate turbulence that is
even approximately homogeneous. There-
fore, they can’t adequately verify the oc-
currence of a Richardson cascade and its
associated Kolmogorov spectrum.

A mechanism for pulling a grid
steadily through helium at the lowest tem-
peratures is still under development, as
are various turbulence probes for use in
4He at very low temperatures. For 3He-B,
the Andreev scattering technique is yield-
ing information about turbulence pro-
duced by an oscillating grid, and there is
indeed some evidence of a Kolmogorov
spectrum. But the inevitably inhomoge-
neous nature of turbulence produced by
an oscillating structure stands in the way
of really convincing evidence.

A number of experiments at very low
temperatures in both 4He and 3He confirm
that some dissipative process leads to the
decay of turbulence even in the absence of
normal fluid. They suggest that the
process is associated with an effective
kinematic viscosity comparable to κ, the
quantum of circulation.

Looking at the experimental results
on homogeneous turbulence in 4He at tem-
peratures so low the fraction of normal
fluid is less than 2%, we are tempted to as-
sert that so little normal fluid could hardly
force the superfluid to behave differently
from its natural behavior in the complete
absence of normal fluid. But convincing
experimental evidence is still lacking.

Theoretical discussion of low-
temperature quantum turbulence and the associated dissi-
pation is, in fact, well ahead of the experiments. Quasiclassi-
cal behavior at absolute zero on length scales larger than the
vortex spacing has been confirmed in simulations.12 In the ab-
sence of viscosity and mutual friction, a turbulent fluid can
lose energy only by acoustic radiation of sound or, in quan-
tum language, emission of phonons.

For effective sound radiation, however, the turbulence
must generate oscillating densities at sufficiently high fre-
quencies. The frequencies associated with a tangle of vortex
lines with separation � are of order κ/�2. For values of � typi-
cal of quantum turbulence produced by a moving grid in 4He
above 1 K, the frequencies are much too small. But nonlinear
interactions cause turbulent energy to flow toward smaller
and smaller length scales. The operation of a Richardson cas-
cade depends on just such a flow.

The Osaka group’s computer simulations12 show exactly
what happens (see figures 3c and 3d). Every so often, two vor-
tices approach each other closely and may well reconnect, as
shown in figure 4b. Reconnection leaves two vortices with
sharp kinks. The importance of reconnections in this context
was probably recognized first in 1995 by Boris Svistunov of
the University of Massachusetts.14 Closely spaced vortices
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Figure 4. How quan-
tum turbulence 
might evolve in a 
superfluid at very
low temperature.15

(a) First, turbulent en-
ergy mechanically
injected at large
length scale flows to
ever smaller length
scales in a quasiclas-
sical Richardson cas-
cade, down to length
scale �, the typical
distance between
quantized vortex
lines. (b) Then vor-
tex-line reconnection
comes into play. The
reconnection is mod-
estly dissipative, pro-
ducing some phonon
emission. But more
of the energy goes
into generating
Kelvin waves of vor-
tices (c). Strong non-
linear interactions
make the Kelvin
waves cascade down
to wavelengths short
enough so that their
energy can be dissi-
pated as phonons or
other thermal excita-
tions. Aspects of this
picture are still con-
troversial.



and vortices with sharp kinks involve vortex motion on
length scales smaller than � and therefore frequencies greater
than κ/�2.

Vortex reconnection is itself dissipative, and it produces
some emission of excitations. The resulting dissipation is
probably small, at least in the case of 4He, because of the small
widths of the vortex cores. The origin of further dissipation
is controversial. One picture is that repeated reconnections
produce smaller and smaller vortex rings, whose collisions
with each other produce high-frequency vortex motion.

Another picture15 is that the repeated reconnections act
like the plucking of a string, thus generating waves on the
vortices called Kelvin waves (see figure 4c). The Kelvin waves
build up in amplitude until nonlinear wave interactions be-
come strong. There can then be a flow of energy within the
Kelvin waves to frequencies that are high enough for the ef-
ficient radiation of phonons. That energy flow is typical of
processes often observed in systems of nonlinear waves. This
new form of turbulence is called wave turbulence, with an
energy flow analogous to that underlying the Kolmogorov
spectrum.

Thus the overall picture of turbulence in a superfluid at
very low temperature might be the sequence shown in fig-
ure 4. But we emphasize that the processes occurring on
small length scales are still the subject of debate. Much work,
both theoretical and experimental, is required before one can
be sure what’s happening. An experimental measurement of
the energy spectrum of the emitted phonons would be very
valuable.

It is possible to estimate the overall dissipation resulting
from the processes shown in figure 4. For the large-scale qua-
siclassical Richardson cascade, the dissipative effect is equiv-
alent to a kinematic viscosity of order κ operating on a scale
of �. That’s compatible with recent experimental results. But
it’s also comparable with the kinematic viscosity of the nor-
mal phase of liquid 4He. This coincidence thwarts the hope
that turbulence in a low-temperature superfluid, which has
no ordinary viscosity, might make it possible to study turbu-
lence at an infinite value of the Reynolds number. That fond
hope seems to be killed by quantum effects that mimic the ef-
fect of a nonvanishing viscosity.

Although quantum turbulence in the experiments dis-
cussed here was generated by the movement of a grid or
some other structure through the superfluid, we have made
no mention of the detailed processes occurring very close to
the structures, analogous to the classical flows just down-
stream of the obstacles in figure 2. Experiments that probe
such processes, especially in connection with oscillating
structures at very low temperatures, are currently being car-
ried out by the groups in Osaka, Lancaster, Regensburg, and
Prague. Evidence is emerging, especially from measurements
of drag, that the processes in 4He might indeed be similar to
those occurring in classical flow. But the behavior of 3He-B
seems to be different.16

Behavior unique to quantum turbulence
We have focused here on aspects of quantum turbulence that
have classical analogues. But some processes, for example the
damping of quantum turbulence by mutual friction in 3He-B,
have no classical analogue. A more striking example is pro-
vided by the first type of quantum turbulence to be discov-
ered and studied experimentally by one of us (Vinen) in the
1950s. That type of turbulence is associated with the flow of
heat in superfluid 4He at temperatures above 1 K. The heat
flow is due to a counterflow of the two fluids. This counter-

flow can lead to the generation of quantum turbulence, even
in the absence of any solid boundaries. The action of mutual
friction in the counterflow leads to a self-sustaining tangle of
vortex lines, in a way that was first clearly explained in pio-
neering computational work by Klaus Schwarz at IBM.17 The
effect depends on the forced movement of vortex lines by mu-
tual friction. And the fact that it can be self-sustaining de-
pends crucially on the presence of vortex reconnections. The
effect has no classical analogue, and it serves to demonstrate
that quantum turbulence can sometimes be richer than its
classical counterpart.

The future
Turbulence continues to challenge our understanding, its
quantum version no less than its classical version. In fact, the
study of quantum turbulence is still in its infancy. Subtle
questions that are now the subjects of extensive research in
classical turbulence, such as intermittency and coherent
structures, are only starting to be considered in the context
of quantum turbulence. Experimenters need to develop more
powerful experimental tools that can match those available
to the student of classical turbulence.

The wider significance of quantum turbulence raises in-
teresting questions. Are aspects of quantum turbulence ap-
plicable to other areas of physics? Grigory Volovik at the
Helsinki University of Technology and the Landau Institute
in Moscow suggests, for example, that quantum turbulence
might have been important in the evolution of cosmic strings
in the early universe.18 It may also be that the study of quan-
tum turbulence will throw light on problems still unsolved
in classical turbulence. As yet, there are no clear answers.

We are grateful for discussions with many of our colleagues through-
out the world who have made contributions to our understanding of
quantum turbulence.
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