So, what is good about Science on Stage? It represents a well-written and super-detailed account of a handful of "science" plays from *Doctor Faustus* and The Alchemist, written centuries ago, to *Galileo, The Physicists,* and other plays of the first half of the 20th century. The book also contains excellent analyses of some contemporary science plays such as Copenhagen and Arcadia to provide, as the author writes, "a sense, through specific examples, of what I judge to be core science plays." Her comment is fair enough, provided that her subjectivity and bias are recognized. But I worry when Shepherd-Barr concludes that her book should "help teachers design and implement courses on science plays." Her definition of science plays is idiosyncratic, and teachers ought to cover all views of how science on stage can be presented, not just Shepherd-Barr's.

Google's PageRank and Beyond

The Science of Search Engine Rankings

Amy N. Langville and Carl D. Meyer Princeton U. Press, Princeton, NJ, 2006. \$35.00 (224 pp.). ISBN 0-691-12202-4

Suppose you have some time to kill and decide to spend it surfing the Web. You point your cursor at whatever page

comes up in your browser, and pick a link to click at random. You click again at the page you've reached, and again, several more times. What is the probability that you will end up looking at the Web

page of PHYSICS TODAY? Obviously, the chances can't be too high, because about 10 billion pages exist on the open Web, and you've just been searching at random. One would think that the chances would be about one in 10 billion. It's obvious, right?

No, not really. Think about it. To get to http://www.physicstoday.org you must be on a page that points to it. If that page points to a small number of pages, you will be more likely to get to PHYSICS TODAY. Furthermore, your chances of having gotten to that page are higher if more pages point to it. So the distribution is not really random at all. Your chances of landing on a partic-

ular page are influenced by the graph of the network—that is, the graph created by the hypertext links on the Web. In fact, currently the graph of the network puts Physics Today somewhere around the 90th percentile of likelihood, meaning your chances of landing on the link are closer to one in a billion—still not very high, but an order of magnitude better than random.

How the Web graph affects the likelihood that a user will find a particular page and the mathematics of computing the probabilities for webpages combine to form the basis of one of the most successful algorithms in the history of computing: PageRank. The algorithm is at the heart of the Google search engine. When you type a search query to Google, it retrieves the list of pages that contain your search words—a computing feat in itself-but more important, it sorts those pages according to their "page rank," the outcome of the algorithm applied to the many billions of Web pages. So understanding the algorithm is the key to understanding how search engines work and to the many other derivative industries based on them. In fact, developing the first practical commercial version of the algorithm made Google's founders Sergey Brin and Larry Page, who developed PageRank at Stanford University, two of the richest men in America.

In Google's PageRank and Beyond: The Science of Search Engine Rankings, Amy Langville and Carl Meyer use the PageRank algorithm as the unifying theme to discuss the mathematics underlying search engines. Langville is an assistant professor of mathematics at the College of Charleston in South Carolina, and Meyer is a professor of mathematics at North Carolina State University in Raleigh. As easy as it is to explain the behavior of randomly surfing the Web, the actual mathematics of the Web graph involves Markov chains and the eigenvectors of extremely large graphs. Langville and Meyer present the mathematics in all its detail, which would make for a dry book if that was all they presented. But they vary the math with discussions of the many issues involved in building search engines, the "wars" between search engine developers and those trying to artificially inflate the position of their pages, and the future of search-engine development. The authors also include a number of asides and boxes that discuss amusing anecdotes and interesting issues that arise in the search-engine world.

Last year, I taught a course on Web architecture and programming in

which one of the primary topics was PageRank and search-engine algorithms. While looking for a text to use for the course, I found several books on trying to improve the page rank of websites, and *Google for Dummies* (Wiley, 2003) by Brad Hill. But I found nothing that was appropriate for a graduate or advanced undergraduate course. Langville and Meyer's book neatly fits that bill.

Although not a textbook, Google's PageRank and Beyond makes good reading for anyone, student or professional, who wants to understand the details of search engines. For those interested in trying to implement search engines, the book can be invaluable. The authors, however, could have covered some additional search-related topics. For example, Langville and Meyer do provide Matlab code for many of their algorithms, but they could also have introduced Lucene, the open-source search engine. Their chapter on the future of search engines already seems a bit dated because they leave out such topics as Web 2.0, the Semantic Web, social networks, and multimedia search engines, all now starting to loom large on the ever-expanding search-engine horizon. But it seems unfair to criticize the authors for omissions in such a rapidly changing field as the science of the search engine, in which any book is doomed to need updating before it hits the market.

> James Hendler Rensselaer Polytechnic Institute Troy, New York

Broken Genius

The Rise and Fall of William Shockley, Creator of the Electronic Age

Joel N. Shurkin Macmillan, New York, 2006. \$27.95 (297 pp.). ISBN 1-4039-8815-3

Few physicists have been as controversial as William Shockley (1910–89), and few have been as influential in defining the contours of the electronics industry. Shockley headed the team that made the first point-contact transistor at the Bell Telephone Laboratories in New Jersey. Shockley later invented the bipolar transistor and seeded the semiconductor industry in California's Silicon Valley. But he was also known for his racist theories of intelligence. Because of his views, he became a reviled public figure and a pariah in the US scientific establishment.

In Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic