
Take a thin sheet of paper, plastic, or rubber. Roll,
crumple, stretch, or tear it. Sometimes the sheet can spring
right back to its original form, as with a roll of paper, while
other times it is permanently changed, as with torn plastic.
Much can be learned from such everyday acts. The subtle
mathematics of differential geometry is needed to make
sense of the deformed sheets, and along the way it offers in-
sights into issues such as the shapes of flowers and the speed
of earthquakes.

History
Start the study of surfaces with Carl Friedrich Gauss. Chiefly
known today for his abstract mathematics, Gauss devoted
years of his life to practical pursuits, from contributing to the
invention of the telegraph to mapping the Kingdom of
Hanover.1 His most famous geographical measurement was

of a triangle formed by the shortest paths between the three
mountain peaks shown in figure 1. Adrien-Marie Legendre
had previously established that for triangles drawn on the
surface of a sphere, the sum of the interior angles exceeds π
by A/R2, where A is the area of the triangle and R is the ra-
dius of the sphere. In 1827 Gauss completed 40 pages of stu-
pendous calculations generalizing Legendre’s result to arbi-
trary curved surfaces, and found a formula giving the specific
amounts to subtract from the angles of a triangle on a curved
surface to bring the sum of the angles to π. 

For a triangle on a perfect sphere, Gauss’s formula says
that the same amount (A/3R2) should be subtracted from each
angle. Earth is not quite a perfect sphere, but it is close
enough that Gauss’s correction to Legendre’s result for each
of the three mountain-straddling angles was less than one
thousandth of an arcsecond. Gauss dryly noted at the time
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Figure 1. Triangles on spheres have angles that add up to more than π radians. (a) In the large triangle, the sum of interior
angles is 3π/2 radians. (b) The largest triangle on Earth’s surface measured by Gauss; the sum of interior angles exceeds π by
7.2 × 10−5 radians. (Earth images courtesy of NASA.)
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that the difference was “insensible,” but that did not stop 
him from creating the ideas of the metric and Gaussian
curvature—two concepts at the core of modern differential
geometry—and proving the celebrated Theorema Egregium.
Some believe that Gauss performed his mountaintop meas-
urement to check whether three-dimensional space itself is
Euclidean, but in the paper he published at the time he did
the work he made no reference to any such question.

Most physicists first learn about metrics and curved
spaces in the context of general relativity, but differential
geometry has long been deeply entwined with the theory of
elasticity. The bending of space is quite a practical topic when
the space is a 2D material surface. Applications of differen-
tial geometry include the engineering of structures, such as
airplanes, built from thin surfaces. For example, when
Alexander Alexandrov and Alexei Pogorelov proved in the
1940s that closed convex surfaces are uniquely specified by
their metrics, the result explained why Ping-Pong balls and
airplane fuselages are not floppy. And when August Föppl
and Theodore von Kármán determined the energies of non-
linearly deformed plates, they helped to figure out how much
airplane wings should flex in flight.

Many of the physics experiments on bending and
stretching of thin surfaces are quite recent, although not for
technical reasons; the apparatus needed to do the experi-
ments is usually modest. What has developed is partly a mat-
ter of style: The recent work has a whimsical character, ex-
ploring patterns and dynamics of thin surfaces for their own
sake. Maybe it is becoming increasingly acceptable just to be
curious.

Buckling and crumpling
Thin elastic sheets are special. David Nelson was one of the
first physicists to see why. Like thin elastic rods, they are
floppy and can bend into hosts of different shapes, but bend-
ing and stretching them creates more complex patterns than
are possible with rods. Nelson initiated studies of the statis-
tical mechanics of flexible sheets as a generalization of poly-
mer physics; among many other things, he found a phase
transition between flat and highly crumpled surfaces.2

Sheets find many tricks to play when changes to their in-
ternal structure force them to buckle out of the plane, a phe-
nomenon similar to the wrinkling of leaves, flowers, and
human skin.3 We noticed some of their strange properties by
looking at ripped cookie wrappers,4 and our experiment is
easily repeatable at home. Take any thin sheet of pliable
plastic—a garbage bag will do—and cut out a square a few
centimeters on a side. Make a thin initial slit with scissors,
and then tear the sheet apart. Notice how the plastic looks
smooth and featureless at the tip of the tear (figure 2a), but
away from the tip where the stress is relaxed, buckles become
visible (figure 2b). In very thin plastic, as many as six gener-
ations of buckles upon buckles can appear. The shapes
formed in ripped plastic bear a great resemblance to the
edges of leaves and flowers. The similarity is not accidental.
There is an underlying geometrical explanation. In fact, rip-
ping is just the means to a geometrical end.

When a thin piece of plastic is ripped, the material close
to the new edge is stretched irreversibly, while far away from
the edge it remains undeformed. If the material were to re-
main confined to the plane, it would have to undergo tremen-
dous strain by compressing and expanding to differing de-
grees across the sheet. It is far more energetically favorable
for the sheet to buckle out of the plane. One way to under-
stand why is to pretend that the plastic is made up of a net-
work of masses and springs, as shown in figure 3. Initially,
all the springs are the same length and are in equilibrium.
Imagine that all the horizontal springs in the bottom row of
the network are permanently deformed and acquire a new
equilibrium length that is 50% greater than before the defor-

Figure 2. Patterns and dynamics of thin sheets. Each experiment can easily 
be reproduced at home or with students. (a) A plastic sheet ripping apart is
viewed with polarized light. (b) A buckling pattern forms in the wake of the
tear. (c) A plastic sheet placed in a cup and poked with a pencil creates a
d-cone singularity, as pointed out by Enrique Cerda and L. Mahadevan.6

(d) Crumpled Mylar contains an ensemble of d-cone singularities, connected 
by ridges. (From T. Witten, Rev. Mod. Phys. 79, in press.) (e) A multiple-
exposure image captures a balloon breaking. The crack follows an oscillating
path and (f) leaves behind a wavy pattern.
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mation. The horizontal springs one row up are also de-
formed, but not as much; their new equilibrium length is 40%
greater than before the deformation. The next row of springs
is deformed even less, and so on up to the top of the network,
which is almost completely unchanged.

A long strip of material deformed in that way is essen-
tially guaranteed to buckle. It is favorable for each material
point to lie at a specific distance from each of its horizontal
and vertical neighbors. If the sheet remains flat, adjacent hor-
izontal rows must slide past one another, stretching the ver-
tical connecting springs more and more for longer and longer
sheets. Something has to give, and what gives is the planar
constraint of an unbuckled structure.

From a formal point of view, assigning a new collection
of equilibrium distances to nearby material points is equiva-
lent to specifying a new target metric; see the details in box 1.
In the target metric tensor for the network shown in figure 3,
only the horizontal component gxx is different from 1, and it
depends only on the vertical position: gxx = gxx(y). We often
assume that once a sheet relaxes to equilibrium, its actual
metric is equal to its target metric, to a first approximation.

For almost any decreasing functional form of the target
metric component gxx(y) of a long sheet, the sheet will spon-
taneously form a structure similar to the one in figure 2b. A
way to show that buckled structures are necessary is to em-
ploy the Theorema Egregium, the most famous result from
Gauss’s 1827 paper, which expresses the Gaussian curvature
K of a surface in terms of the metric. In our case,

(1)

If √gxx decreases in a convex fashion, its second deriva-
tive is positive, so the Gaussian curvature must be negative,
which means that at every point the surface resembles a sad-
dle, as shown in box 2. The only way that every part of a sur-
face can look like a saddle is if the surface buckles.

Sheets can form fascinating patterns even when they are
flat almost everywhere. Origami provides one set of exam-
ples, but even if you lack the dexterity to fold a Kawasaki
rose, you can still do some interesting home experiments by
taking sheets of paper and simply crumpling them. Martine

Ben Amar and Yves Pomeau realized that a fundamental sin-
gularity of crumpled paper, called a d-cone, is generated by
taking an elastic plate and applying forces to its boundary.5

The same type of singularity causes body panels to crumple
and form sharp creases during car accidents.
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Defining a metric on a surface means comparing the surface
in two different states. First, think of a flat sheet of material—
the material in its reference state. Draw a grid of closely
spaced perpendicular lines to form a coordinate system with
the variables x and y. The distance between adjacent lines is
dx along x and dy along y. Now deform the sheet, stretching
or compressing it to change the distances between the lines.
Let the new position in space of a point originally at (x, y) be
called r(x, y). The square of the distance between two points
originally separated by (dx, dy) becomes

(1)

The above computation motivates the definition of the metric
tensor

(2)

where α and β can adopt values x and y.
When discussing physical sheets, two different metric ten-

sors are important. One, the target metric, is derived from the
shape the sheet would take if all neighboring material points
were located at the equilibrium distances preferred by the
imaginary springs of figure 3. The second, the actual metric,
is obtained from the real configuration of the material. The 
difference between the two tensors describes how much the
material is strained and is the starting point of the theory of
nonlinear elasticity. For example, the simplest theory for the
energy per volume U of stretched rubber is that it is propor-
tional to the trace of the actual metric tensor g(x,y) minus the
target metric (a unit tensor):18

U = (G/2)(gxx + gyy − 2), (3)

where G is the shear modulus of the material.

Box 1. Metrics
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Figure 3. (a) Elastic network in equilibrium with all masses 
in the reference state. (b) The equilibrium lengths of horizon-
tal springs in successive rows are increased, but vertical
springs are not changed. In the configuration shown, the red
springs are under tension and are not at their equilibrium
lengths. All configurations of the masses in the plane have
high energy, so the structure will buckle.
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Enrique Cerda and L. Mahadevan found a special case
in which the mathematical buckling of paper can be analyzed
with particular completeness and elegance.6 Lay a sheet of
material on top of a drinking glass and press in the center
with a pencil, as shown in figure 2c. The paper hugs the edge
of the glass around part of the circumference, and then jumps
off at a specific location and definite angle. Now look at a
complete piece of crumpled material. It contains an ensem-
ble of such singularities connected by ridges (see figure 2d).

Thomas Witten and Alexander Lobkovsky have shown that
the ensemble of singularities explains the energy needed to
squash paper into a ball.7 In a big sheet of crumpled paper,
the ridges connecting singular d-cones contain much more
energy than do the d-cones. So a sheet of crumpled paper 
is unstretched almost everywhere, and its resistance to
compression comes almost entirely from ridges stretching
between the rare points where the paper buckles into sharp
corners.
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The Gauss–Bonnet theorem connects in an extraordinary
way four quantities relating to a closed path on a surface:

(1)

The Euler characteristic χ equals the number of vertices V
minus the number of edges E of the path, plus the number of
faces F the path encloses: χ = V − E + F. An inimitable dia-
log inspired by the history of Leonhard Euler’s formula as it is
usually applied to polyhedra is Proofs and Refutations: The
Logic of Mathematical Discovery by Imre Lakatos (Cam-
bridge University Press, 1976), probably the only mathemat-
ics book to mention a “sick mind, twisting in pain.” The
Gaussian curvature K is integrated over the area enclosed
by the path. For each point, find the radius of curvature R in
every direction, as shown in the left figure. If κ1 = 1/R1 is the
maximum curvature and κ2 = 1/R2 is the minimum curva-
ture, then the Gaussian curvature is K = κ1κ2. In the left
figure, the two circles point in opposite directions, so the
Gaussian curvature is negative.

The geodesic curvature κ is integrated along the path.
Think of a mountain path connecting two cities. When a trav-
eler on the path notices it turning sideways left or right, the
reciprocal of the radius of the sideways turn gives the geo-
desic curvature. The turning angles αi are the exterior angles
at the vertices of the path, where the path turns abruptly.

One application of the Gauss–Bonnet theorem is to the
legs of the triangle traveled by Gauss and formed by the
peaks of Hohehagen, Brocken, and Inselberg. Assume that
Earth is a perfect sphere with radius R = 6.4 × 106 m. The
Euler characteristic of the triangle is 1. The Gaussian curva-
ture is 1/R 2 everywhere on the surface of the sphere. The
geodesic curvature is zero along paths of minimal distance,
and the sum of the turning angles is 3π minus the sum of the
interior angles θi. The Gauss–Bonnet theorem therefore gives
Legendre’s result that Σi θi = π + A/R 2. Each distance

between the mountain peaks was about 100 km, giving an
area of approximately 5 × 109 m2, and A/R 2 ≈ 10−4.
Gauss, who did the measurement more precisely, got
7.2 × 10−5 radians.

A second application of the theorem is to the buckling
instabilities of flowers. Consider a sheet wrapped into a cylin-
drically symmetric shape of radius R(y) = √gxx(y), where
R(y) → 1 as y → −∞. The Euler characteristic χ is zero, and
there are no abrupt turns, so

(2)

Because of the cylindrical symmetry, κ is constant for any
value of y and cannot be greater in absolute value than
1/R(y). Thus, at the top of the cylinder at y = 0,

(3)

The right-hand side of equation 2 can be computed exactly
in cylindrical coordinates, using equation 1 from the main
text:

(4)

Combining equations 2, 3, and 4 gives the condition

(5)

When the radius of a flower increases more rapidly than
allowed by the above bound, axial symmetry can no longer
be maintained, and the flower must buckle, as shown in the
figure below at right.

R2
21/= κ

R1 11/= κ

Box 2. The Gauss–Bonnet theorem
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Cracking
Thin elastic sheets not only form static patterns, they also
have interesting dynamical behavior, particularly when they
are stretched to the point of failure—that is, when they break.
The notion that balloons pop like soap bubbles is deeply in-
grained, but they don’t: They crack, as shown in figure 2e.
One day in our lab, Stefan Luding showed us that the frag-
ments of a broken balloon have wavy edges, like rows of
shark fins, as shown in figure 2f. All you have to do to see
that for yourself is inflate a balloon and pop it. The waviness
of the edge means that the crack tip spontaneously changes
direction as the crack propagates around the balloon. The
size and shape of the waves depend on the degree of infla-
tion of the balloon, the history of inflation, and even the age
of the rubber. The size of the waves changes rapidly as the
rupture propagates, and it is usually between one and sev-
eral millimeters.

Delightful as they are,8 balloons make a bad setting for
controlled studies of rupture. Their curved surfaces are in-
convenient for making precise measurements, and the rapid
drop in pressure when the balloon pops creates complicated
time-dependent conditions. Working with Paul Petersan and
Harry Swinney, we created a controlled experiment based on
a machine that could stretch flat sheets of rubber by any
amount along two axes.9

Before long we completed an experimental phase dia-
gram showing that ruptures are straight when the rubber is
stretched mainly along one axis and wavy when it is
stretched nearly evenly along both axes. But obtaining a
theory for when cracks become wavy has been challenging,
a reflection of the general difficulty of predicting the direc-
tion of motion of cracks. Slowly moving cracks seem to obey
the principle of local symmetry, so called for reasons that no
one seems quite to remember, but probably due to Grigory
Barenblatt. The principle gives a recipe for the advancement
of a crack. Draw a circle centered on the crack tip. The crack
moves toward the point at which tensions along the circle are
greatest.

The principle of local symmetry has been checked most
carefully for oscillating crack paths that develop when hot
slabs of glass are dunked into cool water baths. Recent exper-
iments by Benoît Roman, Pedro Reis, and Basile Audoly, in
which a blunt cutting tool is slowly dragged through a thin
plastic sheet, have shown another oscillating instability that
can also be explained using geometrical arguments (figure 4).10

However, for quickly moving cracks like the ones in rup-
turing rubber, remarkably little consensus has been reached
on what equation determines the direction of propagation, or
even on the general form such an equation should take. Thus,
despite promising first attempts by Hervé Henry and Her-
bert Levine,11 explaining when such cracks begin to oscillate
remains out of reach.

When we examined high-speed photographs of the
propagating rupture, such as figure 2e, we noticed something
else puzzling. The leading edge was sharp and pointed, like
a sonic boom. That was supposed to be impossible. The the-
ory of dynamic fracture12 says that when an object breaks
under tension, the cracks that run through it must have
rounded parabolic tips and must travel slower than any
sound waves. Yet here in rupturing rubber was something
that looked supersonic. And on measuring the speeds of
sound in the rubber ahead of the tip, we found that the rup-
ture was indeed moving faster than some sound waves.13

Shear, or transverse, sound waves in solids travel slower than
the more familiar longitudinal sound waves. The cracks we
saw traveled faster than shear waves but slower than longi-

tudinal waves, which made them technically “intersonic,”
not supersonic, but that didn’t make our observation any less
surprising.

The problem has a detailed analytical solution using
equation 3 from box 1 to describe the energy of rubber.14 The
energy density of rubber is given by the trace of the metric
tensor; in other words, geometry and energy are the same.

Here is what is going on. Rubber pops when extended
to several hundred percent of its original size. The elastic en-
ergy stored in it is thousands of times what is needed to sever
the polymers and cut the rubber in two. In the customary the-
ory of fracture, the energy needed to make a crack propagate
must be transferred from the farthest reaches of the stretched
solid. The energy arrives no faster than the speed of sound,
so the crack can travel no faster. For popping rubber, how-
ever, enough energy to make the rupture run can be found
within a few microns of the tip, and conventional speed lim-
its do not apply. Behind the tip of the rupture, the rubber con-
tracts like the end of a rubber band, freely snapping back at
around the speed of sound. The angular tip is indeed a Mach
cone resembling a sonic boom.

Ruptures traveling faster than sound are known in only
one other context: earthquakes. In 1976 Dudley Andrews
found, using computer simulations, that materials torn apart
by shear forces, as when two of Earth’s plates slide against
each other, can have cracks that travel at √2 times the shear
wave speed. Ares Rosakis has found cracks of that sort in lab-
oratory experiments, and Huajian Gao, Young Huang, and
Farid Abraham have seen them in molecular dynamics sim-
ulations.15 Attempts to deduce the velocity of the 1999 Izmit
earthquake in Turkey from data collected at seismic stations
suggested that it traveled faster than the shear wave speed
for a distance of hundreds of kilometers.16 That earthquakes
might travel faster than sound had been doubted. Tensile
cracks propagating faster than shear waves seemed even less
possible, but now we know they happen in the cracking of
balloons. If a thin sheet can be stretched far enough before it
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Figure 4. A wavy crack pattern is created by dragging
a blunt cutting tool through a thin plastic sheet gripped
along its sides.10 (Courtesy of Benoît Roman.)



APS Show—Booth #906
See www.pt.ims.ca/12138-18

Janis Research Company
2 Jewel Drive   Wilmington, MA   01887  USA
TEL +1 978 657-8750   FAX +1 978 658-0349   sales@janis.com

Visit our website at www.janis.com.

Janis Research offers the 
JDR Dilution Refrigerator line with:

• Base temperature of 8 mK – 15 mK

• Cooling power of 
100 μW – 400 μW at 100 mK

• UHV compatible option

• Manual valve control, digital pressure,
and flow measurement/control

• Resistance and CMN calibrated 
thermometers

CUSTOM DILUTION
REFRIGERATORS

J A N I S fails, and if a single propagating failure remains stable, the
crack speed blasts to the shear sound speed and beyond.

Physics and geometry
The experiments described here are simple and accessible.
Yet the problems they raise are quite challenging, and the
mathematical ideal of an infinitely thin surface is not enough
to explain them. Gauss anticipated that too. In 1830 he wrote
in a letter to Wilhelm Bessel:17

We must in humility admit that if number is
merely a product of our minds, space has a real-
ity outside our minds whose laws we cannot a
priori state.

Whether in the buckles of a flower or leaf, the folds of crum-
pled paper, or the crack tips in a popping balloon, thin sheets
naturally develop singularities. In the regions around the sin-
gularities, detailed features of the material become impor-
tant. Many unanswered questions remain. For buckled plas-
tic, the target metric desired by the internal springs, as in
figure 3, seems always to differ slightly from the actual met-
ric of the lowest-energy structure, and we do not understand
what determines the difference. The scale of the crescent-
shaped core in the corners of crumpled paper is still contro-
versial. In cracking rubber, the stresses in the wake of the tip
are actually greater than the stresses right at the tip where
material gives way. We do not fully understand how that is
possible. Many unsolved problems thus stem from the inter-
action of small and large features of surfaces. Geometry and
other large mathematical ideas are not enough to solve those
problems; they must have help from the underlying physics.

We thank Harry Swinney, Paul Petersan, Benoît Roman, Nikos
Papanicolaou, and many others who collaborated with us, and the
National Science Foundation for support under DMR-0401766 and
DMR-0101030.
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