



Advanced 3D finite element software for your PC!

HV systems, magnet design, X-ray imaging, electron/ion guns, shock hydrodynamics and more ...

ahead," he said. "Twenty-six federal agencies have been working on this effort, and to say it is going to move fast when you have that many agencies involved isn't realistic."

The new priorities report breaks EHS research into five categories: instrumentation, metrology, and analytical methods; human health; the environment; health and environmental exposure assessment; and risk management methods. Teague said the Office of Management and Budget has conducted a detailed survey of all nanotech-related EHS research being done in all federal agencies, and that survey is being compared with the EHS priorities list. "We want to identify the gaps [between what is being done and what needs to be done]. That is our third step.

"Then we will lay out a strategy for moving forward on the EHS research needs and addressing the gaps." Although that sounds slow, Teague said, "the agencies haven't been sitting on their hands waiting." Several agencies have been doing extensive nanomaterials toxicology work, he said.

The comprehensive strategic plan for EHS research is expected to be released in the first half of 2008. The plan, Teague said, will be reviewed by the National Academy of Sciences before it is implemented.

Despite Teague's reassurances, Lin, Maynard, and others still question the administration's commitment to the EHS aspects of nanotechnology. Lin noted that in the proposed FY 2008 nanotechnology budget of \$1.44 billion, only 4%, or \$58.6 million, is designated for EHS research. "EHS funding should be greater

if those issues were more of a priority," Lin said. "There is a sense that EHS is not treated as seriously as the commercialization potential of nanotech research."

Teague and other administration officials conceded that 4% seems small; however, it doesn't take into account other nanotechnology research that generates EHS data as a secondary benefit. Teague pointed to research being conducted at the National Institutes of Health into nanomaterials as tools to diagnose and treat disease. Part of that research looks at the toxicity of the materials, he said, and that is valuable EHS data that isn't included in the EHS budget.

Inclusion of those kinds of projects pushes the EHS number up from 4% of the overall budget, he said, although it would likely still be a single-digit percentage. He also noted that the EHS budget for fiscal years 2006 through 2008 totals \$145 million, "and the amount is increasing as people better understand the right and proper place to put the money."

David Rejeski, director of the Wilson Center's emerging nanotechnology project, wrote in response to the NEHI report that the federal EHS effort "is becoming a tediously long process" in danger of being overwhelmed by a global nanotech industry that is producing more than \$30 billion in products each year. "In short," Rejeski said, "the prioritization document lacks the coherence and bigpicture view needed to allow the government to strategically address the challenges being faced—where stakes are high, clarity is needed, and decisiveness and speed are at a premium."

Jim Dawson

web watch

To suggest topics or sites for Web Watch, please visit http://www.physicstoday.org/suggestwebwatch.html. Compiled and edited by Charles Day

http://twitter.com/LovellTelescope

Twitter is a free web-based service for sharing short messages. Anyone can use it to provide frequent updates on his or her activities. Among the first science labs to "tweet" (that is, to post Twitter messages) is the **Lovell Telescope** at Jodrell Bank Observatory in northern England.

http://www.jove.com

Several scientific journals let authors post videos as online supplements. For the *Journal of Visualized Experiments*, the videos *are* the papers. Founded last year, the online journal has a biological focus, but some of the topics, such as microfluidics and cell motility, overlap with physics.

http://www.aip.org/history/newsletter

Twice a year the American Institute of Physics' Center for History of Physics publishes the **History Newsletter**. Research and preservation, at the center and elsewhere, are the main topics. The latest issue appears this month. To catch up on back issues, visit the newsletter's online archive.