
10 October 2007 Physics Today © 2007 American Institute of Physics, S-0031-9228-0710-210-6

As explained in my Reference Frame
column of April 2007 (page 8), a key to
factoring the product N = pq of two
prime numbers, each hundreds of dig-
its long, is being able to find the small-
est power r for which ar (mod N) = 1 for
random integers a. (Two numbers are
equal modulo N if they differ by a mul-
tiple of N.) Peter Shor’s 1994 discovery
that a quantum computer would be
superefficient at this cryptographically
crucial task underlies today’s wide-
spread interest in quantum computa-
tion. Shor’s period-finding algorithm—
so called because the function
f(x) = ax (mod N) is periodic with pe-
riod r—illustrates in striking ways the
novel basis quantum mechanics pro-
vides for computation.

In a quantum computer, a nonnega-
tive integer x less than 2n is represented
by the product state |x〉n = |xn − 1〉⋅⋅⋅|x0〉
of n two-state systems (called Qbits—if
you prefer the vulgar spelling qubit,
please regard Qbit as an abbreviation),
where xn − 1 , . . ., x0 are the bits (0 or 1)
in the binary expansion of x. Quantum-
computational architecture executes a
function f that takes n-bit integers to
m-bit integers, with a linear subroutine
Uf that takes an n-Qbit “input register”
initially in the state |x〉n and an m-Qbit
“output register” initially in the state
|0〉m into the state |x〉n| f(x)〉m.

Suppose the initial state of the input
register is the superposition of all pos-
sible n-Qbit inputs,

(This can be constructed by starting
with each Qbit in the state |0〉 and apply-
ing to each a rotation taking |0〉 into
(l/√2)(|0〉 + |1〉).) Since Uf is linear, if
the initial state of input and output reg-
isters is |φ〉|0〉m then their final joint state
will be

So it appears that just one application of
the subroutine evaluates the function f
for all the 2n possible values of x. This

trick is called “quantum parallelism.”
But appearances can be deceptive.

Given a system in a state you know
nothing about, there is no way to learn
that state. You can only extract infor-
mation through measurement. If you
immediately measure all the Qbits, you
acquire a random value x0 of x and the
value f0 of f (x0), after which the state be-
comes |x0〉n| f0〉m from which you can
learn nothing more. So you could have
accomplished as much with an ordi-
nary classical computer by feeding it a
random input.

Ah, but suppose you measure only
the m Qbits in the output register. When
f(x) is a x (mod N), you will find with
equal probability any one of the r dis-
tinct values f0 and the input register will
be left in a state |ψ〉 proportional to

where x0 is that random integer less
than r at which ax0 (mod N) = f0.

This looks promising. By learning
only two of the many states |x〉 appear-
ing in |ψ〉, you could learn a multiple of
the sought-for period r and be well on
the way to learning r itself. With high
probability, you could learn such a mul-
tiple with two measurements on two
sets of Qbits, both in the same state |ψ〉.
But this route to success is thwarted by
the “no-cloning” theorem, which estab-
lishes the impossibility of duplicating
an unknown quantum state. Something
more clever is needed.

Fourier to the rescue
The clever move is Fourier analysis, in
the form of a spectacularly efficient lin-
ear subroutine UFT that takes the n-Qbit
state |x〉n into

Here the eyes of the quantum physicist
tend to glaze over. Ah yes, if you go
from position to momentum states,
then measurement probabilities be-
come sharply peaked at integral multi-
ples j/r of the inverse period, from

which the period r itself can be learned.
Ho-hum.

But things are not ho-hummish. To
lose interest at this stage is to overlook
two crucial differences from boring
everyday quantum mechanics. First, x
has nothing to do with the position of
anything, concrete or abstract. It is an
arithmetically useful numerical con-
struction out of the states |xi〉 of n inde-
pendent two-state systems, devoid of
physical content: x = x0 + 2x1 + 4x2 +
. . . + 2 n − 1xn − 1. Second, “sharply
peaked” normally means sharply
enough that widths are smaller than the
resolution of any detectors. But here
one wants an integer r that could be
hundreds of digits long. An error of
only one part in 1010 would get all but a
few digits wrong. Such precision lends
to the word “sharp” new meaning that
no physicist ever dreamed of. All the
folklore has to be reexamined.

Reexamination shows that when
n Qbits in the state UFT|ψ〉 are measured,
the resulting integer 0 ≤ y < 2n has a
significant (over 40%) chance of being
within 1/2 of—that is, as close as possi-
ble to—an integral multiple of 2n/r. So
with a little luck, y/2n is going to be
within 1/2n + 1 of j/r for some random in-
teger j. Does this pin down a unique ra-
tional number j/r? Suppose there is a
second candidate j′/r′ ≠ j/r. The differ-
ence between them is (j′r − jr′)/rr′.
Since the candidates are different, the
integer j′r − jr′ can’t be zero, and since
the possible periods r and r′ are both
less than N, the difference between the
candidates is at least 1/N 2. So if 2n > N 2,
such an integer y does indeed deter-
mine a unique rational number j/r.

Of course, j/r determines not r, but r
after any factors it has in common with
the random integer j have been divided
out. So what our quantum computer
gives us is a 40% shot at learning a di-
visor r0 of r. The odds that j and r have
any really big factors in common are
small, so chances are that r will be a
fairly small multiple of r0. You can eas-
ily check with a classical computer to
see if ax = 1 (mod N) when x = r0. If so,

For six years before he retired last year, David Mermin taught quantum
computation to Cornell University students of computer science. Google “CS483”
for his lecture notes, where everything that he says can easily be shown is
shown easily.

Some curious facts about
quantum factoring
N. David Mermin

|φ〉 | 〉= (1/2) .n 2
n

/ Σ x
x

|Ψ〉 | 〉= (1/2)n 2
n

/ Σ x | 〉f x() .m
x

| 〉 | 〉 | 〉x x r x r0 0n n n+ + + + 2 + . . . ,0

UFT | 〉x e= (1/2)n ixy/2 2 /2Σ π n

n n| 〉y .
y

www.physicstoday.org October 2007 Physics Today 11

r = r0. If not, try 2r0, 3r0, . . ., and with a
little luck one of them will work. If you
get up to 1000r0 without success, then
either you were in the unlucky 60%, or
the j you got did indeed share a large
factor with r. In that case try the whole
thing over again. After not enormously
many runs, you’re quite likely to suc-
ceed. And that is how Shor’s “factoring”
algorithm actually works.

Troublesome phases
But wait a minute! Looking more
closely at the crucial subroutine UFT, one
finds it to be cunningly constructed out
of operations that apply conditional
phase shifts e2πiϕ to Qbits, where the val-
ues of ϕ are inverse powers of 2, rang-
ing from 1/2 to 1/2n. Since 2n must ex-
ceed N 2, and N is hundreds of digits
long, most of those phase shifts are ab-
surdly tiny—far too tiny for real hard-
ware, with its inevitable imperfections,
to produce. All a real quantum com-
puter can execute is an approximate
UFT, grotesquely crude on the scale of
parts in 10300, the scale on which one
needs to learn the period r.

When this dawned on me, I con-
cluded that all the hoopla rested on a
silly failure to notice that you can’t turn
fields on and off for durations you con-
trol to parts in 10300. But I was the silly
one. I failed to appreciate the exquisite
interplay between digital and analog in
a quantum computation. Subroutines
like UFT depend on parameters that vary
continuously, as in analog computation.
But readout through measurement pro-
duces an unambiguous sequence of 0s
and 1s, as in digital computation. Read-
ing out a thousand Qbits gives you a
thousand bits of a definite integer—
about 300 digits of the decimal repre-
sentation of that integer. You learn every
one of those 300 digits. The question is
whether they are the right 300 digits.

Those “huge” (perhaps parts in 104)
uncontrollable phase errors lead to
comparable errors in the probability that
that 300-digit integer will be one of the
ones you’re looking for. So realistic
phase errors might change the proba-
bility of getting what you’d like from a
little over 40% to a little under 40%.
They hardly matter!

A nice illustration of how quantum
and classical programming styles differ
is provided by the actual calculation of
a x (mod N). Start with a, square it to get
a 2 (here I stop writing “(mod N)”—all
multiplications are modulo N), square
that to get a 4, continuing in this way to
get all the powers of the form a 2 j for
0 < j < n. Then to get a x, you simply form
the product of all those powers of a2 j for

which x j = 1 in the binary expansion of
x. But now there is a parting of the
quantum and classical ways.

In a classical computer, the two-state
systems used to represent 0 and 1,
called Cbits, are cheap and time is pre-
cious. If you want to calculate a x for 2n

different values of x, you use n groups
of Cbits to make a table of all the n dif-
ferent a2 j and you look up the various
entries going into a x for each value of x,
thereby removing the need to recom-
pute those squares each time you turn
to a new value of x.

But in a quantum computer, Qbits
are precious and time is cheap. The
multiplication of the appropriate a2 j

into a x is not applied 2n different times
to an input register in each of the states
|x〉n , but only once, to an input register
in the state |φ〉 in which all 2 n possible
|x〉n are superposed. Each a 2 j is used just
once. In some terms in the superposi-
tion it’s multiplied in, and in others it
isn’t, depending on whether the j th bit
of x is 1 or 0. After that single condi-
tional multiplication is carried out, you
can square a2 j to get the next power
a2(j + 1) and store the result in the same
group of Qbits that formerly held a2 j, at
a huge saving in Qbits.

Why factoring 15 is too easy
There is another saving in Qbits to
watch out for, because it is misleading.
The period r of ax (mod pq) can easily be
shown to be a divisor of (p − 1)(q − 1).
So if p − 1 and q − 1 are both powers of
2, as with the primes 3, 5, 17, 257, . . .,

then so is r. But when r is 2m, then 2n/r
is itself an integer, and measuring the
output of the subroutine UFT can, again
easily, be shown to give an integral
multiple of 2n/r with probability 1,
even when 2n merely exceeds N but
not N 2. Therefore factoring N = 15 =
(2 + 1) × (4 + 1) with a 4-Qbit input
register does not provide a serious test
of the real Shor algorithm. The small-
est number that demonstrates the full
subtlety of the procedure is 21, which
requires an input register of 9 Qbits,
big enough to accommodate (21)2.

Another subtlety, only recently
pointed out,1 reduces that irritating 60%
chance of not getting a divisor of r.
When N is the product of two distinct
primes, one can (again easily) show that
r is not only less than N but less than
1/2N. As a result, besides getting a divi-
sor of r when the measurement yields a
y as close as possible to an integral mul-
tiple of 2n/r, second, third, and even
fourth closest also work. This increase
in the number of useful outcomes low-
ers the probability of failure from 60%
to 10%, greatly simplifying the subse-
quent classical detective work.

Features of Shor’s “factoring” algo-
rithm like those mentioned here are
usually buried in the technical details.
By exposing them to the light, I hope to
have revealed some of the subtlety and
charm of that remarkable procedure.

Reference
1. E. Gerjuoy, Am. J. Phys. 73, 521 (2005). �

