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Hans Bethe introduced his now-famous ansatz to obtain
the energy eigenstates of the one-dimensional version of
Werner Heisenberg’s model of interacting, localized spins in
a solid.1,2 Although it is among Bethe’s most cited works and
has a wide range of applications, it is rarely included in the
graduate physics curriculum except at the advanced level.
The 75th anniversary of the Bethe ansatz is appropriately
marked by reflecting on the impact of Bethe’s result on mod-
ern physics, ranging from its profound influence on the field
of exactly solved models in statistical mechanics to insights
into the subtle nature of quantum many-body effects ob-
served in cold quantum gases.

Bethe (figure 1) completed his PhD in theoretical physics
under Arnold Sommerfeld in 1928. During his subsequent
time at the University of Munich, Bethe used a traveling fel-
lowship to go to Cambridge in the fall of 1930 and to Rome
during the spring terms of 1931 and 1932. His 1931 paper,
published in German in Zeitschrift für Physik, was submitted
from Rome. That period was one of the most exciting times
in the history of physics; the theory of quantum mechanics
was being refined and applied to reveal the intricate nature
of the quantum realm. Those breathtaking developments,
along with encounters with pioneers such as Heisenberg,
Paul Dirac, and Enrico Fermi, clearly had a strong influence
on Bethe’s research. (For further biographical details, see the
October 2005 Hans Bethe special issue of PHYSICS TODAY; for
Bethe’s own account of his time spent with Fermi in Rome
see PHYSICS TODAY, June 2002, page 28.)

Solving the Heisenberg model
In German “der Ansatz” can mean “basic approach,” “rudi-
ment,” or “beginning.” A mathematical ansatz is a sort of hy-
pothesis: an attempt at a solution followed by a demonstra-
tion that it is correct, rather than a solution derived using a
previously known method.

The Bethe ansatz began as a solution to the Heisenberg
model, a 1D array of quantum mechanical spin-1/2 particles
at fixed locations. Pairs of nearest-neighbor spins interact,
and periodic boundary conditions mean that the last spin in-
teracts with the first. Solving the model means finding all of
the eigenstates of the Hamiltonian and their corresponding
energies.

Spins in the Heisenberg model can point in any direc-
tion, but any state of the system can be written as a linear
combination of basis states in which each of the spins is ei-
ther spin up or spin down in a specified direction. Angular
momentum in the direction of quantization is conserved,

which means that each eigenstate is a linear combination of
basis states that all have the same number of down spins. In
other words, the Hamiltonian for an array of L spins is a
block-diagonal matrix, with one block for each number of
down spins. It is useful to think of each down spin as a qua-
siparticle, and the state of all up spins as the vacuum state.

The wavefunction for a single quasiparticle looks very
much like the wavefunction for a free particle in a ring: a
plane wave of the form exp(ikx), with an energy that depends
on the wavenumber k, which itself must be an integer multi-
ple of 2π/L. Eigenstates with two or more particles are more
complicated because the particles interact—but the interac-
tion is short-range, since only pairs of nearest-neighbor spins
contribute to the Hamiltonian. 

Bethe developed his ansatz by looking at those regions,
in the configuration space of quasiparticles, where all the
quasiparticles are separated from one another. For n quasi-
particles, there are n! such regions in the n-dimensional con-
figuration space, one for each ordering of the quasiparticles.
Bethe’s big idea was to hope that the wavefunction in each
region is a superposition of plane waves, as if the quasipar-
ticles were not interacting at all. By matching the wavefunc-
tions on the interfaces between those regions, he worked out
a system of equations, shown in box 1, for the coefficients and
wavenumbers of the plane waves. The wavenumbers were
then no longer integer multiples of 2π/L. Taking the place of
that constraint is a complicated set of equations known as the
Bethe-ansatz equations, or simply the Bethe equations.

Bethe went on to show that his ansatz gives 2L energy
eigenvalues, where L is the length of the chain. Since 2L is the
total number of eigenstates, he had found the complete en-
ergy eigenspectrum for any finite system. 

Bethe never returned to the problem. It was next picked
up in 1938 by Lamek Hulthén, working in Leiden, in the
Netherlands. Hulthén’s work pertained to the antiferromag-
netic case of the Heisenberg model, in which antiparallel
spins are energetically preferred. Hulthén used Bethe’s solu-
tion to the finite system to obtain the ground-state energy per
site in the limit of an infinitely long chain.3 Hulthén correctly
guessed that the wavenumbers describing the ground state
form a uniform distribution in the infinite size limit. Because
of Hulthén’s contribution, the Bethe ansatz is sometimes
called the Bethe–Hulthén hypothesis. 

Interacting bosons and fermions
Hulthén’s work was followed by a long hiatus for the Bethe
ansatz. Its next appearance was not until 1963, but the de-
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velopment was a remarkable one: the exact solution of a 1D
model of interacting spinless bosons.4 In that model, now
known as the Lieb–Liniger Bose gas after Elliott Lieb and
Werner Liniger, N bosons interact on a line of length L via
zero-range contact potentials, as described in box 2. Unlike
the 1D Heisenberg model, in which spins are fixed at discrete
lattice sites, the Lieb–Liniger Bose gas is a continuum model
in which the particles (equal spinless mass bosons) are free
to move along a line. The form of the wavefunction is pre-
cisely that of the Bethe ansatz, but with a different form of
the two-body interaction term, and therefore a different en-
ergy eigenspectrum. Again, the Bethe ansatz provides the
complete solution to the model. An important feature of the
model is that the interaction strength, parameterizing the rel-
ative magnitudes of the kinetic and potential energy terms,
is variable. In the limit of infinite interaction strength, the
model reduces to the model of “impenetrable” hard-core
bosons discussed by Marvin Girardeau in 1960.5 That limit is
special because no two impenetrable bosons can occupy the
same state, which means that the strongly interacting bosons
effectively behave like noninteracting fermions.

The problem of N fermions interacting in one dimension
can be solved using the same method, but now one has to do
additional work to account for the spin degrees of freedom.6,7

The result is an even more complicated,
nested set of Bethe-ansatz equations. The en-
ergy eigenspectrum is still given in terms of
the wavenumbers, but the spin degrees of
freedom influence the values of those
wavenumbers. Of particular interest in the 1D
fermion model are the bound states for at-
tractive interaction and the differing behav-
iors of the bound fermion pairs for different
values of the interaction strength. For strong
attraction, the bound states behave like tightly
bound molecular dimers (a condensation-like
behavior), but in the weakly attractive regime,
the system describes loosely bound Cooper
pairs (a superconductivity-like behavior).

The more complicated Bethe-ansatz
equations of the interacting-fermion type ap-
pear in a number of other models, including
the 1D Hubbard model solved by Lieb and
Fred Wu, which describes electron correla-
tions in a narrow energy band.8 Those fun-
damental models of interacting particles,
solved in the 1960s in terms of the Bethe
ansatz, are enjoying a revival of interest due
to the striking experimental advances in
quantum atom optics.

The ice model
Applications of the Bethe ansatz extend to
systems seemingly unrelated to the 1D prob-
lem in quantum mechanics that Bethe origi-
nally considered. The Bethe-ansatz solution to
the Heisenberg model involves the diagonal-
ization of the Hamiltonian, a 2L by 2L block-
diagonal matrix. If a similar matrix appears in
a model of another type, then that model may
also admit a Bethe-ansatz solution.

Such is the case of the ice model, a 2D
model in statistical mechanics, so called be-

cause of its resemblance to the crystalline structure of ice. An
oxygen atom sits at each vertex of a square lattice with peri-
odic boundary conditions, and a hydrogen atom sits on each
edge. Each hydrogen atom is closer to one of the neighbor-
ing oxygen atoms than to the other. The “ice rule” requires
that each lattice site contain a molecule of H2O—that is, that
each oxygen has two near neighboring hydrogens and two
far neighboring hydrogens. The model is usually represented
graphically by placing an arrow on each edge of the lattice to
represent the position of the hydrogen. The ice model is also
called the six-vertex model, because each vertex has six al-
lowed configurations of two inward-pointing and two out-
ward-pointing arrows.

Solving the model means calculating the partition func-
tion, a count of all allowed configurations weighted accord-
ing to their energies. In actual ice, all allowed configurations
have the same energy, but the model is generalized by as-
signing different energies to the six different vertex configu-
rations. In 1967 Lieb solved the ice model by calculating the
partition function in terms of the eigenvalues of a matrix
called the transfer matrix.9

If two adjacent rows of vertical arrows are specified,
there are at most two ways of filling in the horizontal 
arrows between them; if the rows of vertical arrows are not

Figure 1. Hans Bethe early in his career.
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identical, then there is at most one way. The energy of a con-
figuration is therefore almost completely determined by the
configuration of the vertical arrows. For a lattice of width N,
a 2N by 2N transfer matrix has elements describing the contri-
butions that are made to the partition function by all the pos-
sible pairs of adjacent rows of vertical arrows.

In any configuration of the ice model, two adjacent rows
(in fact, any two rows) of vertical arrows must contain the
same number of down arrows. The transfer matrix is there-
fore a block-diagonal matrix, with one block for each num-
ber of down arrows from 1 to N. The “conserved” down ar-
rows in the ice model play the same role as the conserved
quasiparticles in the Heisenberg model.

Lieb showed that the eigenvectors of the transfer matrix
can be obtained in terms of the Bethe ansatz. The solution of
the ice problem created great excitement at the time and was
on a par with Lars Onsager’s solution of the 2D Ising model.
The six-vertex ice model was soon refined and generalized,
and the study of exactly solved lattice models got under way
in earnest.

The similarity between the Bethe-ansatz solution of the
six-vertex model and the generalization of Bethe’s solution to
a variant of the Heisenberg spin chain was soon noticed. Not
only are the two models both solvable using the Bethe ansatz,
but their respective matrices share the same eigenvectors. In
other words, the Heisenberg model Hamiltonian commutes
with the ice model transfer matrix.10 The connection between
those two models is a manifestation of a more general con-
nection between 1D quantum problems and 2D classical sta-
tistical-mechanics problems. All this pointed to the power of
the Bethe-ansatz approach and set the stage for the remark-
able developments to follow.

Integrability and the Yang–Baxter equation
Bethe found that his many-particle problem reduced to deal-
ing with the way in which two particles come together. His
ansatz thus effectively factorizes interactions among many
particles into two-body interactions. Such factorization is in-
timately entwined with the concept of integrability. By way
of analogy, in classical mechanics a system is integrable if all
the constants of motion can be calculated. For example, the
two-body gravitational problem is integrable, but the three-
body problem is not. The long-range nature of the gravita-
tional force means that the three-body interaction cannot be
reduced to a series of two-body interactions. Almost without
exception, a given model system is integrable if it can be
solved in terms of the Bethe ansatz.

A key step in C. N. Yang’s solution of the 1D interacting
fermion problem was the introduction of operators that obey
what is now called the Yang–Baxter equation. The same con-
cept appeared in a different guise in Rodney Baxter’s solu-
tion of the eight-vertex model (similar to the ice model, but
with two additional vertex configurations allowed) as the
condition for commuting transfer matrices.10,11 For example,
in the context of the Heisenberg spin chain or the Lieb–
Liniger Bose gas, the three-body Bethe ansatz wavefunction
amplitudes Aabc can be written in the general form Aabc = YabAbac
and Aabc = YbcAacb, where Yab = −sba/sab. In terms of those oper-
ators, two possible ways exist to get from Aabc to Acba, namely

Acba = YabYacYbcAabc and Acba = YbcYacYabAabc.

Both paths must be equivalent, with

YabYba = 1 and YabYacYbc = YbcYacYab.

The relations have a simple graphical interpretation. The first
is a unitarity-type relation, and the second is a form of the

Yang–Baxter equation as shown in figure 2, also called the
star-triangle relation.

The Yang–Baxter equation provides a set of relations that
can be solved to yield new integrable models. That realiza-
tion sparked a revolution in the fields of exactly solved mod-
els in statistical mechanics and integrable models in quantum
field theory. In quantum field theory, the Yang–Baxter equa-
tion describes the scattering of particles in one spatial di-
mension plus time (“(1 + 1) dimensions”), a class of prob-
lems that caught Richard Feynman’s interest shortly before
he died. In one of his last articles, he wrote:12

I got really fascinated by these (1 + 1)-
dimensional models that are solved by the Bethe
ansatz and how mysteriously they jump out at
you and work and you don’t know why. I am try-
ing to understand all this better.

The theory of integrability also has an influence on de-

The Hamiltonian for a Heisenberg spin chain of length L is

where σi = (σx, σy, σz)i are the Pauli spin matrices at site i. The
constant J is negative in the case of the Heisenberg ferromag-
net (in which parallel spins are energetically preferred) and
positive for the Heisenberg antiferromagnet (where antiparal-
lel spins are preferred). Periodic boundary conditions are
imposed so that σL+1 = σ1. The eigenstates are linear combi-
nations of basis states

where |x1, . . ., xn〉 is the state in which the n spins x1, . . ., xn
are overturned. Bethe’s great insight was to deduce that the
amplitudes a(x1, . . ., xn) are of the form

where the sum over P ë Sn is over all n! permutations P = {p1,
. . ., pn} in Sn, the group of permutations of the integers 1, . . .,
n. Bethe was able to use that ansatz to obtain the coefficients
AP in terms of the two-body interaction terms sj� = 1 −
2exp(ik�) + exp(ikj + ik�). Specifically, he found

where εP is the signature of the permutation. The variables kj
must satisfy the system of equations

for j = 1, . . ., n. The above equations for the wavenumbers
kj are known as the Bethe-ansatz equations. Solutions for kj
give the energy eigenvalues in the form

Box 1. Technicalities of the Bethe ansatz
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velopments in mathematics. Investigation into the mathe-
matical structure of the Yang–Baxter equation led to the in-
troduction of the theory of quantum groups and to signifi-
cant advances in the theory of links, braids, and knot
invariants. More recently, the Bethe ansatz itself has led to
some intriguing developments in the field of combinatorics.
Specifically, components of the ground-state wavefunction
for a variant of the Heisenberg spin chain can be used to
count combinatorial objects called alternating sign matrices.13

Recent developments in string theory involve a surprising
connection between semi-classical strings in super
Yang–Mills theory and the Bethe-ansatz solution of the 1D
Heisenberg spin chain.14

Out of the paper, into the lab
Systems solved by the Bethe ansatz occasionally appear in
condensed-matter physics experiments. For example, a num-
ber of compounds are made up of effectively 1D arrays of
spins, which behave like the 1D Heisenberg spin chain. No-
table models that are relevant to experiments in condensed-
matter physics and whose solutions involve the Bethe ansatz
include the Gaudin long-range magnets, the Bardeen-
Cooper-Schrieffer electron pairing model, the Kondo model,
and the Anderson model. 

Experiments designed to realize the more fundamental
models solved in terms of the Bethe ansatz also have value.
The spectacular recent progress in trapping atoms in optical
lattices15 may provide the most fertile testing ground for the
realization of 1D quantum mechanical models. Indeed, from
those studies, the exactly solved interacting Bose gas has
emerged as a fundamental model of quantum many-body
physics of direct experimental relevance.

One particularly striking example involves the experi-
mental realization of the 1D Lieb–Liniger Bose gas over a
wide range of interaction strengths. In experiments per-
formed by Toshiya Kinoshita, Trevor Wenger, and David
Weiss, freely moving 1D Bose gases of cold rubidium-87
atoms are confined in an ensemble of long cigar-shaped tubes
made by a combination of two light traps.16,17 The atomic in-
teraction strength can be varied by changing the trap depths.
The measurements of the total 1D energy fit the Lieb–Liniger
exact solution for the ground state of the interacting 1D Bose
gas.16 Moreover, the researchers obtained the local pair-
correlation function by measuring photoassociation rates
over a range of interaction strengths, as shown in figure 3.17

The local pair-correlation function is proportional to the
probability of observing two particles in the same place, so it
should decrease as the interaction strength increases, and
tend to zero in the strong-interaction limit in which the
bosons behave like noninteracting fermions. The experimen-
tal data are in excellent agreement with the theoretical result
obtained using the Bethe ansatz. The experiments give a di-
rect observation of the fermionization of bosons.

Given the ongoing experimental advances in the trap-
ping of fermions in low dimensions, the 1D interacting
fermion model may soon be experimentally realized. Then
the door should open for many other exactly solved models
that have essentially lain fallow over the years: the multi-
component Fermi model, a mixed equal-mass boson–fermion
model, a model of a spinor Bose gas, and a model of inter-
acting anyons, among others.

Optical-lattice experiments may even allow the realiza-
tion of the Heisenberg model and other integrable quantum
spin systems. By developing cold gases of polar molecules
as a quantum simulator for strongly correlated condensed-
matter systems, researchers may be able to construct a com-

plete toolbox to realize effective spin models with desired
forms of two-spin interactions and coupling strengths.18 That
tantalizing development parallels the growing interest in in-
tegrable quantum many-body systems and their applica-
tions to quantum entanglement, quantum information the-
ory, and quantum computation, all of which depend on the
quantum interference of amplitudes of mutually exclusive
events. Of course, quantum interference is not present in any
classical dynamics, information, or probability theory. How-
ever, it is a vital ingredient in quantum systems integrable
by the Bethe ansatz.

After 75 years the Bethe ansatz is alive and well. It has

Figure 2. Graphical interpretation of the Yang–Baxter
equation YabYacYbc = YbcYacYab. It can be viewed as a
space-time plot of the scattering of three particles a, b,
and c, with time going from bottom to top. The scattering
is seen to factor into successive two-body interactions.

Box 2. The interacting boson model
The Lieb–Liniger Bose gas, in which N bosons interact on a
line of length L via zero-range δ-function contact potentials, is
defined in terms of the Hamiltonian

The particles are located at the positions x1 < x2 <
. . . < xN, a set of positions known as the fundamental
domain. A key feature of the model is the variable interaction
strength c. The form of the wavefunction is precisely that of the
Bethe ansatz, described in box 1, with the two-body interac-
tion terms given by sab = ka − kb + ic. The Bethe-ansatz
equations are

for j = 1, . . ., N. Solutions of the equations give the energy
eigenvalues
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been used to solve genuine interacting quantum many-body
systems for which perturbative approaches and mean-field
theories often fail. In the case of interacting bosons and fermi-
ons, the spatial confinement to one dimension leads to en-
hanced dynamics and correlations, and ultimately to new
quantum phases. Because of its underlying mathematical
structure and the richness of its results, the Bethe ansatz has
had a remarkable impact on several fields, with many sur-
prises along the way. Given the recent advances in the ma-
nipulation of atoms in optical lattices, no doubt many more
surprises lie ahead.
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Figure 3. Comparison between experiment and theory
for the local pair-correlation function versus effective
interaction strength of the one-dimensional Bose gas.
For strong coupling the local pair-correlation function
approaches zero, indicating that strongly interacting
bosons act like noninteracting fermions. The solid line is
obtained from the Lieb–Liniger result, which uses the
Bethe ansatz. (Adapted from ref. 17.)


