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mensional quantities cancel out when
one measures the fractional difference
between the frequencies that induce
spin flip and cyclotron excitation. 

QED survives its toughest test
Kinoshita and Nio have recently com-
pleted3 the impressive task of numeri-
cally computing the 891 eight-vertex
Feynman diagrams that contribute to
the (α/π)4 term of the QED prediction of

ge. Together with the new experimental
result, that calculation (plus small ad-
ditions for standard-model physics be-
yond QED) yields a new determination
of α with an uncertainty of only 7 parts
in 1010.

That’s an order of magnitude better
than any measurement of α that does not
involve ge. The best determination of α
by means independent of ge come from
recently reported measurements with

rubidium and cesium atoms.4 They yield
α to about 7 parts in 109. Even though the
Kinoshita–Gabrielse α has a 10 times
smaller uncertainty, its excellent agree-
ment with the Rb and Cs results is in fact
the best test to date of QED.

So there’s still no sign of a discrep-
ancy that might point the way to new
physics beyond the standard model.
The test does set a limit on the size of
possible substructure of the electron,
which the standard model regards as a
point particle—albeit bathed in a cloud
of virtual photons and electron–
positron pairs. The most conservative
interpretation of the new test says that
any substructure must be smaller than
10–16 cm. That’s a thousand times less
than the diameter of the proton.

”We thought of QED in 1949 as a
jerry-built structure,” recalls Freeman
Dyson, one of the theory’s inventors, in
a congratulatory letter to Gabrielse. “We
didn’t expect it to last more than 10 years
before a more solidly built theory re-
placed it. But the ramshackle structure
still stands. The revealing discrepancies
we hoped for have not yet appeared. I’m
amazed at how precisely Nature dances
to the tune we scribbled so carelessly 57
years ago, and at how the experimenters
and theorists can measure and calculate
her dance to a part in a trillion.” 

Bertram Schwarzschild
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Figure 3. Typical quantum-jump spectroscopy runs in the Harvard Penning
trap. After appropriate excitation, a clean step in νz, the electron’s axial oscilla-
tion frequency, signals (a) spontaneous decay to the spin-down cyclotron-level
ground state made possible by an induced spin flip from the spin-up ground
state, or (b) the excitation of the spin-up ground state to the first excited level,
from which it spontaneously falls back 10 seconds later. (c) The fraction of
imposed RF pulses yielding successful quantum jumps of the kind shown in (a)
is plotted against pulse frequency. The rise indicates the spin-flip excitation fre-
quency νa of figure 2. (d) Plotting the fraction of successful jumps of type (b)
against the frequency of imposed microwave pulses reveals the cyclotron exci-
tation frequency fc. The curves and their uncertainty bands are fits of line-shape
models to the data. (Adapted from ref. 1.)

Flattened clouds of ultracold atoms display 
a topological phase transition
When pairs of atom clouds merge and interfere, the resulting fringes embody and reveal 
the atoms’ collective coherence.

Reducing a system’s dimensions
from three to two need not impoverish
its physics. In fact, some of the richest,
most intriguing physical phenomena
show up in flat, thin layers. The frac-
tional quantum Hall effect and high-
temperature superconductivity are es-
sentially two-dimensional—as is the
topological phase transition known as
Berezinskii-Kosterlitz-Thouless.

Like the onset of ferromagnetism
and superfluidity, the BKT transition
doesn’t involve the release or capture of

latent heat, but it differs from those
more familiar transitions in one distinc-
tive respect: When a system makes the
BKT transition, its symmetry is pre-
served, not broken. What changes is the
topology of the system’s coherence.

Vadim Berezinskii identified the un-
usual transition in an analysis that ap-
peared first in Russian in 1970.1 Soon
after, and unaware of Berezinskii’s
paper, J. Michael Kosterlitz and David
Thouless derived the same result.2

Being quite generic, the transition

was expected to occur in a host of low-
temperature 2D systems. In 1978,
Isadore Rudnick and, independently,
David Bishop and John Reppy found
the predicted transition in films of su-
perfluid helium-4. (The online version
of this story links to the original
PHYSICS TODAY report from August
1978, page 17.)

Now, Zoran Hadzibabic, Peter
Krüger, Marc Cheneau, Baptiste Batte-
lier, and Jean Dalibard at the École Nor-
male Supérieure in Paris have observed
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the BKT transition in flattened clouds of
ultracold rubidium atoms.3 Their ex-
periment not only confirms BKT theory
in a new system, but also reveals for the
first time the transition’s microscopic
instigators: local topological defects or
vortices.

Holed stockings
Two-dimensional systems can have
perfect crystalline order, but only at ab-
solute zero. As soon as any thermal en-
ergy becomes available to a 2D lattice,
long-wavelength fluctuations emerge
to break up the order.

Orientational symmetry is more ro-
bust. Despite thermal fluctuations, par-
ticles in a 2D lattice, even when not
equally spaced, can line up coherently.
As the temperature rises, the length
over which orientation remains coher-
ent drops. But, as Berezinskii, Koster-
litz, and Thouless discovered, some-
thing else happens too.

At finite temperatures, pairs of op-
positely oriented defects—vortices—
spontaneously form. When the temper-
ature is low, the vortex pairs are tightly
bound and sparsely distributed; the
system’s coherence falls off with dis-
tance algebraically—that is, with a
power-law dependence.

But as the temperature rises, the vor-
tex pairs not only proliferate but also
widen. When a wide pair sits amid tight
pairs, its vortex and antivortex are ef-
fectively independent of each other.
Collectively, the unbound vortices and
antivortices change the character, or
topology, of the coherence. Now, the co-
herence falls off with a steeper, expo-
nential dependence.

The unbound vortices and antivor-
tices also undermine the system’s in-

tegrity like holes in a swatch of stocking
silk. In a finite system or a stocking, the
more independent vortices or holes that
form, the weaker the system or fabric
becomes—until it loses its coherence or
falls apart.

But in the infinite system of BKT the-
ory, the change is abrupt: Below the crit-

ical temperature, coherence is alge-
braic; above, it’s exponential.

It takes two
A Bose–Einstein condensate, like other
ordered collectives, loses its character-
istic coherence if squashed flat. But a 2D
condensate can adopt a kind of quasi-
long-range order and keep its superflu-
idity. Even before anyone had made a
BEC, Berezinskii, Kosterlitz, and Thou-
less anticipated that a 2D condensate
would undergo their transition.

Observing a BKT transition in a BEC
has been a goal of the cold-atom com-
munity for years. How to reach that
goal wasn’t clear at first. Broadly speak-
ing, experimenters determine a BEC’s
properties by measuring density varia-
tions after releasing the condensate
from a trap. Unfortunately, density
variations don’t provide easy access to
the system’s coherence. Phase fluctua-
tions work better. A previous experi-
ment suggested how to exploit them.

In 2004, the Paris group created a
BEC and divided it into 30 parallel
slices with an optical lattice. Releasing
the 30 slices from the trap produced un-
expected interference patterns—unex-

Figure 1. Probing the thermodynamic state of a two-dimensional gas entails (a)
first trapping two independent clouds (red) by means of an optical lattice (green).
Each cloud contains about 105 atoms of rubidium-87 and measures roughly
120 × 10 × 0.2 μm3. When the trap is turned off (b), the clouds expand mostly in
the vertical (z) direction and interfere to form a set of wavy maxima (blue) more or
less parallel to the xy-plane. Illuminating the clouds with resonant laser light in the
y-direction creates a shadow image in the xz-plane. (Adapted from ref. 3.)

Figure 2. fringe
shape reveals both
the scale of the
coherence in the
two-dimensional
condensate and
the presence of
vortices. (a) At low
temperatures
(about 200 nK),
the fringes are
straight, indicating
long-range coher-
ence. (b) At higher
temperatures
(about 300 nK),
the coherence
scale shortens and
the fringes become
wavy (c) The pres-
ence of a single
unbound vortex
creates a disloca-
tion in the fringe
pattern. (d) When
the temperature
increases, more
vortices form, cre-
ating more dislo-
cations. (Adapted
from ref. 3.)
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pected because the slices were in-
dependent of each other.4

The Paris researchers realized
they could probe the structural
coherence of a 2D BEC by trap-
ping two of them at the same tem-
perature and releasing them si-
multaneously. The resultant
fringes, which arise principally
from variations in phase rather
than density, would embody the
coherence. Repeating the experi-
ment at different temperatures,
they hoped, would reveal the
BKT transition.

Figure 1 outlines the experi-
mental setup and figure 2 illus-
trates the kind of data obtained.
When released, the two clouds of
87Ru atoms expand most rapidly
in the direction of their tightest
confinement, the z-direction.
After 20 milliseconds, a pulse of
laser light tuned to the atoms’
5S → 5P transition is shot through
the cloud in the y-direction.
Atoms absorb the light and cast
shadows in the xz-plane. A CCD
camera records the patterns.

The patterns’ most prominent
features are the fringes, which
arise from the beating of the two
matter waves of the released con-
densates. The fringe spacing D is given
by ht/md, where h is Planck’s constant, t
the time after release, m the mass of
87Rb, and d the separation between the
two traps. To quantify the patterns, the
Paris group fitted the brightness distri-
bution with a function F(x,z) that con-
sists of a Gaussian envelope G(x,z) and
a cosine term:

F(x,z) = G(x,z)[1 + c(x)cos(2πz/D
+ ϕ(x))].

Here, c(x) characterizes local coherence,
while the phase term ϕ(x) characterizes
long-range coherence. 

Although the function fits the data
well, it doesn’t provide a direct, theory-
testing route to the underlying physics.
While the Paris researchers were trying
to figure out how to analyze their data,
a providential preprint arrived from
theorists Anatoli Polkovnikov of Boston
University, Ehud Altman of the Weiz-
mann Institute of Science in Rehovot, Is-
rael, and Eugene Demler of Harvard
University.

Inspired by the Paris group’s 2004
paper, Polkovnikov, Altman, and Dem-
ler had tackled and just solved the
analysis problem5: How does the 
coherence of a 2D (and 1D) BEC mani-
fest itself in a two-cloud interference
experiment?

Their starting point was the first-

order correlation function g1(r,r′) of the
two interfering condensates. Integrat-
ing g1(r,r′) through the xy-plane be-
tween the limits ±Lx and ±Ly yields
how quickly the fringe brightness falls
off with distance in the x-direction. In a
perfectly correlated system, the fringe
brightness would persist indefinitely.
But in an imperfectly correlated system,
integrating over longer and longer dis-
tances would gradually wash out the
signal. And the higher the temperature,
the faster the falloff.

Because the fringes are imaged in the
xz-plane, fluctuations in the y-direction
average out, but the fluctuations can
still affect the integrated brightness in
the x-direction. The condensate is
longer in the x-direction than in the y-
direction, however. And toward the
horizontal ends of the condensate, r
varies strongly with x and weakly with
y. Choosing the integration of g1(r,r′) to
satisfy Lx � Ly therefore reduces the in-
tegral’s unmeasurable y-dependence.

When Polkovnikov, Altman, and
Demler did the calculation, they found
the fringe brightness falls off at a rate
proportional to Lx

−α. The remarkably
simple expression applies on both sides
of the BKT transition. Just below the
transition, α = 0.25; above it, α = 0.50. 

The expression’s derivation pre-
sumes a uniform system, but at the

edge of the trap, thermal exci-
tations reduce the local con-
trast c(x). When the Paris team
applied the theory to their
data, they restricted the meas-
urement of fringe brightness to
the region around the fringe
center where the local contrast
c(x) never falls below half its
central value c0.

The team found that inte-
grated fringe brightness does
indeed fall off as Lx

−α. And, as
figure 3 shows, the exponent
derived from the data changes
with temperature (or with its
surrogate c0), as predicted by
Polkovnikov, Altman, and
Demler’s application of BKT
theory.

Vortices and high-Tc
Near the BKT transition, a 2D
system teems with both tightly
and weakly bound pairs of vor-
tices. The vortices appear in an
interference pattern as abrupt
steps because a particle, swept
once around a vortex, ends up
with its phase rotated by 2π.

The Paris experiment can’t
resolve tight vortex pairs, but,
as panels c and d of figure 2

show, a few presumably unbound vor-
tices manifest the telltale steps. For the
first time, the vortices at the heart of
BKT theory are evident.

One of the attractions of working
with cold-atom condensates is the abil-
ity to control their interactions. The
Paris group foresees a host of further
experiments. Perhaps the most intrigu-
ing is creating an analog of a high-Tc su-
perconductor. The atoms would have to
be fermions, not the bosonic 87Rb atoms.
By adjusting the temperature and an
applied magnetic field, the fermions
could be brought through a supercon-
ducting transition. And by adjusting
the distance between two condensates,
one can investigate the extent to which
high-Tc superconductivity really is two-
dimensional.

Charles Day
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Figure 3. The Berezinskii-Kosterlitz-Thouless transi-
tion is abrupt in an infinite system, but gradual in a
finite system. In the Paris experiment, the transition
shows up as an increase in an exponent α that
characterizes the coherence. Here, the ordinate is
the central contrast c0, which decreases smoothly
and predictably as the temperature rises. (Adapted
from ref. 3.)




