Roger Penrose, Michael Penston, Martin Rees, Peter Scheuer, and Virginia Trimble, along with a new generation of radio observers and a stream of young visitors from around the world. Yet Hoyle, who must have been aware of what they were discovering and its enduring importance, became almost totally disengaged from them and their research. It would be interesting to learn the group's attitude toward Hoyle then and today.

Was Hoyle a genius, and was his life a triumph or a tragedy? Maybe, in the words of the English writer and politician, Edward Bulwer-Lytton, "genius is master of man. Genius does what it must, and talent does what it can." Mitton's balanced and entertaining biography convinces me to agree with the Wester Ross landlord and provides a clear account of how much of the astrophysics and cosmology that we now take for granted came to be understood.

Into the Cool: Energy Flow, Thermodynamics, and Life

Eric D. Schneider and Dorion Sagan U. Chicago Press, Chicago, 2005. \$30.00 (362 pp.). ISBN 0-226-73936-8

In a universe obedient to the second law of thermodynamics, how is it that life was able to arise, replicate itself faithfully, and ultimately produce organisms of ever greater complexity?

That paradox, discussed by Erwin Schrödinger in his 1943 lecture series "What is Life? The Physical Aspect of the Living Cell," appears in the first chapter of Into the Cool: Energy Flow, Thermodynamics, and Life by Eric D.

Schneider and Dorion Sagan. From that starting point the authors launch into a well-researched and often fascinating discussion that covers an impressive range of subjects, including Maxwell's demon (the gnome in James Clerk Maxwell's thought experiment), weather patterns, natural selection, the maturity of ecosystems, and the purposefulness of life.

The disparate topics are linked by the book's central thesis-that complex structures arise spontaneously to eliminate or reduce thermodynamic

gradients because "nature abhors a gradient." For instance, chapter 10 describes hurricane formation. What begins as a modest low-pressure system over the ocean, with vertical air currents, is amplified by positive feedback into a monster storm. Although potentially devastating, a hurricane serves a basic thermodynamic purpose: The massive movement of moist air to higher altitudes where condensation occurs greatly accelerates the transfer of heat from the warm waters of the ocean to the cool reaches of the atmosphere. In that way, the storm acts to reduce a temperature gradient and thus increases the entropy of its surroundings. A hurricane provides just one example in which a complex structure arises to counteract a thermodynamic gradient. Other instances discussed in the book include the hexagonal patterns of Bénard convection and counter-rotating Taylor vortices.

With such examples under their belts, Schneider, formerly a senior scientist at the National Oceanic and Atmospheric Administration and director of the National Marine Water Quality Laboratory of the US Environmental Protection Agency, and Sagan, an accomplished science writer, move on to "the scientific meat" in the book's third section, "The Living." They argue that life itself, far from conflicting with the second law of thermodynamics, is the quintessential example of complexity reducing a gradient, specifically "the immense gradient between a 5,800 K sun and the 2.7 K temperature of outer space." Toward the end of chapter 15, on plants, the authors note that some two-thirds of the radiation impinging on a tree is ultimately spent pumping water into the surrounding air (evapotranspiration) and conclude, unpoetically, that "a tree is best understood as a giant degrader of [solar] energy."

It is well known, of course, that most organisms feed directly or indirectly off the stream of energy that arrives as photons from the Sun. Only by cycling energy and matter through its metabolic network is an organism able to stave off the decay toward thermal equilibrium—that is, death. Schneider and Sagan, however, contend that a "thermodynamic imperative" to efficiently reduce gradients provides the key to understanding such processes as the evolution of species ("Genetics . . . is not enough," they write) and the development of ecosystems. At times the authors give the second law of thermodynamics a Darwinian status, as in chapter 17, where one reads that it "'selects'...

those systems best able to reduce gradients under given constraints." the book's final chapter, Schneider and Sagan suggest that tapping into thermal gradients is not just a necessary condition for life but ultimately the explanation of life's purposeful behavior. These ideas are neat, but does the evidence really support them? Although it is true that life, to persist in its state of low entropy, must continually degrade the free energy of its surroundings, it is not clear that a dictate to do so with maximum efficiency is really what drives the biosphere's evolving complexity.

Physicists might also quibble with the authors' promotion of the slogan "nature abhors a gradient" as a kind of distillation of the second law. "The world changes when you view it through the lens of irreversible gradient reduction, rather than mere entropy increases and decreases," they write. The authors envisage "a thermodynamics in which the spontaneous degradation of gradients is paramount." Even if we leave aside gravity, which the authors acknowledge does not quite fit their paradigm. it should be clear that nature does not always abhor a gradient. Entropy is ultimately a more useful concept than gradient reduction for explaining why an oil droplet placed in water does not diffuse while an ink droplet does.

Into the Cool shows that there is much more to thermodynamics than Carnot cycles and phase diagrams. The book delivers an engaging, nontechnical introduction to a variety of topics, with some interesting speculations along the way, and an excellent bibliography for those interested in learning more. Although I have not been converted to Schneider and Sagan's point of view, the book left me thinking long after I had closed its pages.

> Christopher Jarzynski Los Alamos National Laboratory Los Alamos, New Mexico

The Grand Contraption: The World as Myth, **Number and Chance**

David Park Princeton U. Press, Princeton, NJ, 2005. \$29.95 (331 pp.). ISBN 0-691-12133-8

Early conceptions of the universe were vitalistic, mythological, and teleological: Nature was filled with spirits, gods, demons, and purposes. However, starting in about 1600 AD, the universe was understood to have

mathematical order and lawgoverned behavior. Astronomers began seeing the world as a mechanical contrivance, like clockwork, a metaphor used as early as the mid-14th century by French philosopher Nicole Oresme. In the 20th century, physicists moved away from the mechanical metaphor toward a

quantum universe where chance events are essential but which is no less law-governed than the old universe.

David Park, a professor emeritus of physics at Williams College in Massachusetts and author of The How and the Why: An Essay on the Origins and Development of Physical Theory (Princeton U. Press, 1988), has now written The Grand Contraption: The World as Myth, Number and Chance. It is an impressive piece of scholarship that must have taken many years of study. People have always wondered about the skies and sought to understand the changes of nature. How did the world come into existence—if it did? What does it consist of, and how will it end? Although philosophically minded people have always asked such questions, their answers have changed considerably

throughout the 4000 years surveyed in Park's book. For a very long period, religion and mythology were parts of cosmological thinking, aspects that Park pays much attention to. Naturalistic, if not vet scientific, attempts to understand the world started with the Ionian natural philosophers during the pre-

Socratic period—the beginning of the so-called Greek miracle that ushered in the era of science. But the miracle did not last, as Park illustrates with references to such early Christian thinkers as Lucius Caecilius Firmianus Lactantius and Cosmas Indicopleustes, who had nothing but scorn for the ridiculous, heathen claim that Earth was round.

Yet Christianity was not in general antiscientific. When scientific activity took off during the Renaissance, it was largely as a religious project, and the religious dimension continued to dominate science throughout the scientific revolution, from Nicolaus Copernicus to Isaac Newton and Gottfried Wilhelm Leibniz. Although modern science developed in Europe. cosmological thought can be found in all cultures and often in sophisticated

forms. Park's story is essentially a history of cosmology in Europe and the Near East. He has almost nothing to say about cosmology in India and China. The neglect of China is especially regrettable, as the great empire was scientifically and technologically more advanced than Europe during most of the period from about 300 AD to the early 16th century.

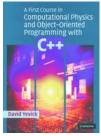
The Grand Contraption is well documented and massively informative, vet written in an unpretentious style that makes it easy to read. I found the first half of the book, which covers the period up to the late Middle Ages, to be particularly interesting because it deals with subjects that cannot be easily found in other similar works. For example, Park describes in fascinating detail the early Middle Ages. an epoch that historians of science usually consider a dull and uninteresting period. The chapters dealing with the period from the early 15th century to the mid 19th century, from Nicholas of Cusa to Charles Darwin, are more conventional and relatively less detailed. Strangely, the book ends at the early 20th century, and Park has little to sav about the stormy developments in cosmology that started with Albert Einstein's theory of gen-

eral relativity and Edwin Hubble's observations of receding nebulae.

I noticed only a few errors or questionable interpretations; let me mention three. Nicolaus Steno, the innovative geologist and anatomist, is wrongly characterized as a Danish prelate, although he later became ordained as a Catholic priest. Alexander Friedmann's paper on the dynamic solutions of Einstein's cosmological field equations dates from 1922, not 1921. And Park states that Ptolemy probably conceived his heavenly spheres to be mathematical devices rather than real entities. This may be the impression that the Almagest leaves, but historians of astronomy now believe that Ptolemy did think of the spheres as real, as evidenced in his later work, the *Planetary Hypotheses*, which Park fails to mention.

All the same, The Grand Contraption is a masterful presentation of the long timelines in the history of cosmology. It is a remarkable book on the development of the worldview from chaos to cosmos, and from the most ancient cultures to modern time.

Helge Kragh University of Aarhus Aarhus. Denmark


A First Course in **Computational Physics and Object-Oriented Programming** with C++

David Yevick Cambridge U. Press, New York, 2005. \$70.00 (403 pp.). ISBN 0-521-82778-7, CD-ROM

The use of computers is ubiquitous in physics research. Even the most analytical theorists need to conduct numerical calculations to obtain specific results. Thus the physics curriculum should contain some instruction in understanding and applying computational tools. Such instruction is sometimes built into traditional courses, but many departments now offer standalone courses in computational physics. The title of David Yevick's text, A First Course in Computational Physics and Object-Oriented Programming with C++, suggests that this text would be appropriate for one of these newly developed computational physics courses. However, it is not. Instead it is a book on programming in C++ and

is designed for the traditional scientific computing courses that were developed before the more recent computational physics courses.

One type of computational physics course involves a

physics version of the numericalmethods courses taught in mathematics departments. The focus is on algorithm developments and their application to physical systems, and students frequently must already have some ability to program. Textbooks for such courses include Alejandro L. Garcia's second edition of Numerical Methods for Physics (Prentice Hall, 2000), Tao Pang's An Introduction to Computational Physics (Cambridge U. Press, 1997), and Paul L. De-Vries's A First Course in Computational Physics (Wiley, 1994). A text that attempts to teach programming, along with the computational physics, is Rubin H. Landau's A First Course in Scientific Computing: Symbolic, Graphic, and Numeric Problem Solving Using Maple, Java, Mathematica, and Fortran (Princeton U. Press, 2005). This text is a

Bridging by part for fleyeles (Computational believe to the ing Biology 2007 Career Awards at the Scientific Interface Deadline May 1, 2006 \$500,000 award over five years for postdoctoral fellows BYAF IS ACCEPTING ELECTRONIC APPLICATIONS ONLY These postable awards suppost up to two years of advanced. postdoctoral textising and the first three years of a faculty appointment Condidate must hold a Ph.D: in mathematics, physics, biophysics, chemistry (physical, three estical, or computational), computer raisson, Antivition, or any insensing and must not have accepted, a that oabally of is writing, a bandty appointment at the time of application Charliforte disorbly propose is sometime approaches to naswer. impo trat biological questions BWF encourage proposed that include experimental validation of theometical module Degree-greating institutions in the U.S. and Coundarray a one insteamp to two constitutes Complete program information, eligibility guidelines, and application intentions an analable on BWPs website at anotherisate a. ta10.001.5100 fa10.001.5160 ewordberfinel.org PostOffice Box (300) 2 I T. W. Alexander Drive Research Triangle Park NC 2770/03001 turough) Williams Fuel is so independent private forestation del to sebracing the biomerical cience by reppering research and other scientific and educational adiotion

Cryogen Free VSM to 18 Tesla State-of-the-artunique VSIVI system. offering a range of measurement stolls. certied out with interchange able inserts using a single oryomagnet and.... without any liquid helium! Optional features: Specific Heat Messurements Redistribly such Hall Effect Messurements ACSneoeptibility Thermal Transport Measurements 3He insertițiemp, down to 0.3K). Over thiset flems, range 3000 to 7000). New 2045th magnet power supply Rotatingsample probe Cooling power with standard Simitomo. coldinession palice trabe cooler Conne mulitalisto usuab gour áthailth thaith t APS Mendinas abino (Sattinas a) Stary I 018 DP3*Pigatkersabelinn; 2006(Dreater) JON Dr. Jayren Chatellan Nation Stand St. IDS ingenieur Buo D. Bellz Jeit Gton-145 bet ett genstationen meditaloparojaktionak www.orgogento.co.uk.